_AD=AD37 971

UNCLASSIFIED

MICHIGAN UNIV ANN ARBOR SYSTEMS ENGINEERING LAB F/6 12/1
VECTORIZED GENERAL SPARSITY ALGORITHMS WITH BACKING STORE, (V)
JAN 77 D A CALAHAN: P 6 BUNING, W N JOY AF=AFOSR=2812~-75

SEL~-96 AFOSR=TR=77=0259

AFOSR - TR- 77 < 095 9

SEL Report # 96
('.-e«:
Nt

Vectorized General Sparsity Algorithms
with Backing Store

—
(A
@)
e
™
-
<
Q
<<

D. A. Calahan

P.G. Buning
W. N. Joy

January 15, 1977
Approved for public 1 lesse - y v
distribution unlim ,

Sponsored by Directorate of

ljrgg?@ - ﬂ i o o e e i et
APR 8 1977 U under Grant 75-2812
LGOI U G

DW
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
SYSTEMS ENGINEERING LABORATORY

THE UNIVERSITY OF MICHIGAN, ANN ARBOR

TR —————— Measa ol S - G N ey ‘1."‘

I
|
|
|

T ———

o

“ORCE OFPFICE OF SCIENTIFIC RESEARCH (40 1)

'E OF TRANSMITTAL T0 DDG

.cchnical repert has been reviewed a:ic

s7ed 10or publig release IAW
ributicn 15 unlimited,
. BLOSR

'nical Imfermation Officer

AIR 190-12 (),

it AP Y B AT A T R A

e

kit)

UNULA
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS

EPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

2. GOVT ACCESSION NO.f 3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF EEPQNT & PERIOD COVERED

ﬂéi VECTORIZED GENERAL SPARSITY) Tnterim
~7 ALGORITHMS WITH BACKING STORE, J e it copkant
2 . d 6. PERFORMING ORG. REPORT NUMBER
2 7. AUTHOR(s) . 8. CONTRACT OR GRANT NUMBER(s)
/7, D. A. alahan, | (251 e 2 ¥
=] P. G./Buning”/ ~_4) F- AFOSR 7E-2812 ~ -
/ J o / L
9. PERFORM Uﬂg’i\{ﬂ'zﬁWON NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
! : % AREA & WORK UNIT NUMBERS
Dept. of Elec. and Comp. Engineering 1L i 8.7 2
University of Michigan V7 2304/A777
Ann Arbor, Michigan 48109 L) 61102F
t1. CONTROLLING OFFICE NAME AND ADDRESS NI 12, RepoRT DATE /
Air Force Office of Scientific Research| !S'Janmﬂl
(NM) 3. NUMB = e |
‘ i hington D, C, 20332 106
3 ':- MONITORING AGENCY NAME & ADDRE§§(H different from Conlrolllng Office) 15. SECURITY CLASS. (of this report)
] P MR . e e aee
; d4s (A / UNCLASSTFIED
S 7_ ,___\, 15a. DECLASSIFICATION/DOWNGRADING
/ SCHEDULE

[C£1-9¢)

i6. DISTR.IHBAUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract enterad in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

B

19. KEY WORDS (Continue on reverse gside if necessary and identify by block number)

Sparse matrices
Linear algebra
Parallel processing
Vector processing

e ————

20. ABSTRACT (Continue on reverse side {f necessary and identily by block number)

The direct solution of large, sparse unsymmetric sets of simultan-
Y eous equations is commonly involved in the numerical solution of

: algebraic, differential, and partial differential equations. This
report describes two new classes of computational algorithms for
the solution of such equations. Each algorithm detects matrix
structure suitable for vector processing and, potentially, for
faster processing on cache machines. One procedure favors struc--

A A

LS

3R {

DD , 323“‘;3 1473 EDITION OF 1 NOV 65 IS OBSOLETE UNCLASSIFIED Z/, D /¢ 2

SECURITY CLASSIFICATION OF THIS PAGE (When Dalva Entered)

TE Y e

&

o 2 Eac o o — . —— B s |

LN L ASSLE A1)
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

\
20. ture usually associated with small sparse matrices; one is
directed toward sets of equations requiring a large backing
store. Comparisons of timing (on a cache machine) and of
memory requirements are made between these new procedures
.and existing general sparsity techniques for a variety of -
science-engineering examples. Issues related to implementa-
tion are given for software implementations of the two

algorithms.

2 B

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SR v e

%

T T e o ...J

e g M G O G e o udina 4 o >

S e g !
Wity Ssction /

gt Section () !
SLED 0!

Q2UTION/AYAILABILITY CODES
fist. T AVAIL. Mﬂ/l SPECML

v

f VECTORIZED GENERAL SPARSITY
ALGORITHMS WITH BACKING STORE

by
D.A. Calahan
P.G. Buning
W.N. Joy

SEL Report #96
January 15, 1977

/,Systems Engineering Laboratory [) [) (:

University of Michigan {EDEDHDI7EJ
k| Ann Arbor, Michigan 48109

APR 8 1977

¥ LE@EU'ITE]»

D

Sponsored by Directorate of
Mathematical and Information Sciences
Air Force Office of Scientific Research
under Grant AFOSR 75-2812

A A

DISTRIBUTION .,'IMH L me.' A

Approved for public release; i
T Distribution Unlimited {

R v e
“,
N
\L
~N
o

s e, s o R B i ot M AP Y Y SRIST S R o R

§ : Abstract

o

The direct solution of large, sparse unsymmetric sets of
simultaneous equations is commonly involved in the numerical
solution of algebraic, differential, and partial differential
equations. This report describes two new classes of computa-
tional algorithms for the solution of such equations. Each
algorithm detects matrix structure suitable for vector processing
and, potentially, for faster processing on cache machines. One nro-
cedure favors structure usually associated with small sparse
matrices; one is directed toward sets of equations requiring a
large backing store. Comparisons of timing (on a cache machine)
and of memory requirements are made between these new procedures
and existing general sparsity techniques for a variety of
science-engineering examples. Issues related to implementation

are discussed. Finally, flowcharts and other user information

f are given for software implementations of the two algorithms.

<
v
b

—r, - TGS . N R

TABLE OF CONTENTS

page
Preface i
Chapter L. SPARSE MATRIX METHODS it
3 A. Introduction 1
1. Historical review of direct sparse matrix algorithms 1
2. General vs. special sparsity algorithms 2
3. Summary of report 3
B. Sparse Matrix Factorization 4
1. Matrix factorization 4
2. Software implementation)
C. Vectorization 7
1. Vectors and vector instructions 7
2. Vectorization efficiency 9
Chapter 2. VECTORIZED GENERAL SPARSITY ALGORITHMS 11
A. Row vs. Column Ordering 11
B. The LU Map Approach and Its Symbolic Vectorization 14
1. Introduction 14
2. Vectorized list data structures 18
3. Vector fills 19
C. Comparison of Scalar and Vector Sparsity Methods 20
1. Introduction 20
2. Storage 20
3. Speed: symbolic 21
4. Speed: numeric 21
D. Symbolic vs. Numeric Speed 25 (
E. Inner Loop Considerations 27 :
1. Introduction 27
2. Expanded vs. packed list structures 28
3. Sequencing of the multiply-subtract operations 30
4. Assembly-language programming 31
F. Partitioning 32
1. Introduction 32
2. Fixed local store 33
a. Introduction 33
b. Full matrices 34
c. Sparse matrices 35
d. The I1/0 problem for finite element solutions 39
e. The I/0 problem in the substitution process 41
3. Variable local store 44
G. Evaluation 47
Chapter 3. DESCRIPTION OF A DUAL VECTORIZED GENERAL SPARSE
: EQUATION SOLVING PACKAGE 50
0 A. Introduction 50
' B. General Program Description and Use 53
1. Program description 53
2. Example use of VEGES 53

- . S T a4

o

C. Simplified Equation Formulation 58
1. Introduction 58
2. Scalar case: example 58
3. Scalar case: algorithm 61
4. Vector case: introduction 62
Unpartitioned form 63
Partitioned form 68
5. Vector case: algorithm 69
D. Program Flow Charts 70
E. Details of the Partitioned Solution 72
1. Introduction 72
2. Flow chart of UNBLOK symbolic preprocessor 73
3. Flow chart of ABLOK numeric preprocessor 73
4. Flow. chart of symbolic, numeric solution 77
5. Example of partitioned solution of finite
element problem 78
F. Fortran Implementation (VEGES) 83
1. Symbolic processing 83
2. Numeric factorization 83
3. Forward and back substitution 85
4. Conclusions 86
G. Fortran Implementation (VEGES/P) 86
1. Symbolic processing 86
2. Partitioning 87
3. Strip numeric factorization 88
4. Numeric factorization 89
5. Forward and back substitution 90
APPENDIX A. NUMERICAL EXPERIMENTS 94
APPENDIX B. EXAMPLE FORTRAN CODES FOR FORWARD SUBSTITUTION 103
APPENDIX C. MAIN PROGRAM FOR SOLUTION OF FINITE ELEMENT GRID
OF FIGURE 19 104
REFERENCES 106

R VN

R A

o

2

TE Ve

Preface

This report considers a number of issues related to the
vectorization and partitioning of general sparse matrix
solution algorithms that have not previously appeared in the
sparse matrix literature. Typically, these involve processor
modeling and algorithm analysis, design, and evaluation,
particularly as they relate to the implementation and use of a
software package prepared by the authors. With this
rather broad topical coverage - perhaps suitable for several
reports - it is felt to be useful to present the major results
with page references, for the guidance of readers with specific

research or software interests.
Vectorization

1. The sparse solution is decomposed into symbolic and
numeric phases; in contrast to previously proposed scalar
algorithms, this vectorized version results in relatively

less symbolic processing time for large matrices (page 21).

2. The average length (Lave) of vectors processed in
the inner loop of the numeric phase, together with the nature
of the processor (scalar or vector), determine the relative effi-
ciency of the vector algorithm. This vector algorithm may be
preferred even on scalar processors if Lave is sufficiently
large (pages 21-25).

3. Timing comparisons with a variety of other sparse

solvers are given for a family of finite element problems

(Appendix A).

(1)

Partitioning

1. 1I/0 transfer tine to a backing store is an important
issue, especially for the forward and back substitution steps;
however, careful accounting in the symbolic processing phase
can be used to predict when computation is I/0 bound or when
the cost of local store in a virtual system becomes pro-
hibitive (pages 33-38).

2. The megaflop rate, popular in evaluating vector pro-
cessors, can be used to succinctly display the efficiency of
partitioned general sparsity algorithms vis-a-vis special full-,

band- and block-solvers (pages 47-49)

Implementation

1. A partitioning of the numeric but not the symbolic
phase is proposed; pros and cons of this choice are discussed

(pages 72-73).

2. Aids to equation formulation, although strictly not
required in sparse equation software, are proposed to avoid
cumbersome data structure and structural ordering and over-
lap problems (pages 58-69).

3. An interactive partitioning scheme, based on user
specification of either column breaks or maximum buffer
storage, is proposed (pages 77-82).

4. Examples - including Fortran code - of use of a soft-
ware package on partitioned and unpartitioned problems arc

given (pages 56.104-105).

(ii)

5. Timing results of applying two new sparse solvers to
problems in electrical power systems, rigid body dynamics,

and electronic devices, and to a family of finite element

o

problems are presented (Appendix A).

e L e)

N ¢

S v e

(iii)

1

CHAPTER 1. SPARSE MATRIX METHODS

A. Introduction

1. Historical review of direct sparse matrix algorithms

Prior to 1972, sparse systems of simulataneous equations
tended to result from the solution of one of the following classes

of equations:

(a) partial differential equation (PDE's), where, after

discretization of the spatial variables, using finite difference

(FD) or finite element (FE) methods, a regularly-structured matrix

was solved using iterative techniques.

(b) ordinary differential equations (ODE's) or algebraic
equations, where, after time discretization and/or linearization, an
irregularly structured matrix was solved using direct methods.

In 1972, George [1] showed that, using dissection, a square
n by n grid obtained from solution of PDE's by 5-point discretization
L formulae could be solved directly in 0(n3) time rather than O(n4),
a prohibitive cost associated with band-solution methods. Later,

Woo and Gustavson [2] derived an ordering of the grid points which

made dissection faster than band methods for n greater than 10.

Considering that iterative methods require O(nz) time per iteration,

these results made it feasible for the first time to solve many
""small'" PDE problems directly, leaving iterative methods only for
large problems (perhaps n greater than 50) having special structural
and numerical properties. Indeed, in [2] a variety of iterative

and direct solution methods are compared to determine the value of

n for which equal amounts of "work" are required. Very recently,

Bank [3] showed that certain classes of FD problems can be solved

(1)

d N

-

#

in 0(n%) time.
2. General vs. special sparsity algorithms

When the matrix structure is highly regular and the
number of spatial discretizations in the shortest dimension is
small (s 15), easily constructed band elimintation algorithms
may be fully justified computationally. However,

(a) as the grid size grows in a FD or FE problem
a dissection strategy is called for;

(b) as structural irregularity is introduced by
curved or odd-shaped boundaries, by the use of a family of finite
elements, or by implicit boundary conditions resulting from
algebraic or ordinary differential equations of a physically-
connected external system, a band algorithm becomes progressively
less efficient; examples of the latter mixed PDE/ODE/algebraic

systems are shown in Table 1;

Partial Dif. Eqns. Ordinary Dif. and
(regular sparsity) Algebraic Eqns.
(irregular sparsity)

SETUCEUECS cie vsie - o sielal o o s Nesaios i Mechanisms
SEMLCORAUCEOT v v v vv s va s doe vy Circuits
Devices

COMDUSIETOM . « o o0 v s sersi ois oo s et s 0 Emissions

Table 1. Related applications yielding mixed sparsity structures

(2)

S

T e

EE RN

Y

e A

(¢) when a vector computer architecture or a
backing store is necessitated by a large problem size, specialized
programming techniques may by required to achieve acceptable
solution efficiency.

Dissection-related software to implement (a) exists in a
variety of forms. Early programs required grid sizes related
to a power of 2 and involved data structures that require recoding
of the equation formulation step in a band-related solution.

This complication induced George in a later publication [4]
to consider less efficient dissection methods that retain some
of the simplicity of band matrix programming.

General sparsity methods - where an arbitrary matrix
structure is allowed - offer an alternative to both banded and
dissected grid solution methods. General sparsity software can
accept a matrix formulation in any order, since the equations
can be reordered internally by the sparsity software to correspond
to a banded or a dissected solution. Usually, the principal
price extracted of the user for this generality is a preprocessing
step where the matrix structure is analyzed and an efficient
numerical solution algorithm prepared specfically for that
structure. The introduction of additional structural irregularity
for any of the reasons cited in (b) above is then at least

conceptually trivial.
3. Summary of report

The above rationale for use of general sparsity software {

would apply to any of a number of existing software packages

(3)

T

id

R
y T 1

[5], [6]. The aim of this report is to expand the role of
such algorithms by
(a) proposing alternate data structures that
improve the storage efficiency of existing software when solving
large systems of equations associated with large FD and FE problems;
(b) including the optional use of a backing
store when, because of problem size, either real memory capacity
of a dedicated system is exceeded or total memory costs become a
significant factor in a virtual environment:
(c) recognizing local structure in the matrix
that can be exploited by a vector processor and, incidentally, can
improve solution times on cache ''scalar" processor as well.
Two increasingly sophisticated software pacakages are des-
cribed which permit the reader to evaluate the programming

effort involved in utilizing general sparsity techniques.

As the problem size grows, backing store and special architectures
can be brought into use with no change in the equation formulation

and a minimum of additional programming effort.

B. Sparse Matrix Factorization

1. Matrix factorization

Consider the equation
Ax=">b

where A = [aij]nxn, and b = [bij]nxl contain constant coefficients

(4)

A g T W o Sy ‘wﬁ

and x = [xij]nxl is a vector of unknowns. We will choose to

factor A into the triangular form

A=LU
4 where L = [tij]nxn’ a lower triangular matrix, and U = [uij]nxn'
an upper triangular matrix, and either Kii =1 for 1l £ 1 §n or

; u.. = 1 for 1 < i <'n. In general, L and U will contain the same

11

non-zero positions as A, plus "fill" positions created by the

elimination process.
2. Software implementation

The use of specialized algorithms and data-handling
methods for sparse equations is almost a decade old [7].
The random structure is usually described by a bit map or a
linked list. This structure is then often preprocessed symbolic-
ally to reduce the computation in a subsequent (repeated)
numerical solution phase (Figure 1). The three common two-step

(symbolic/numeric) solution methods are:

~r——

(a) code generation [8], [6], where a large set
of explicit machine instructions - including array indices -

are generated in the symbolic step; these instructions '"map'" the

given A and b into x during the numerical solution step; an
instruction must be generated for each arithmetic operation, so
that if a full matrix were being processed 0(n3) instructions

would be required corresponding to the 0(n3) arithmetic operations;

- P TR

(b) interpretive index generation [9], [6] similar

to (a) except that the code is in the form of array indices and

I T

higher level instructions; for example, the instructions might

specify row/column operations such as inner and outer product and

A el

(5)

- - - e ‘ﬂ;

Ad N

T e

Matrix Structure

Pivot Symbolic
Order Preprocessor

Machine code, or
interpretable indices, or

L U map
Formulate Solve | Update
[‘5’ Equations Equations Variables

Figure 1. Model symbolic and numerical solution procedure

the indices would specify the non-zero positions of the row/column;
less storage is required than (a) - usually a factor of 5 or 10 -
but execution is commonly 3-5 times slower;

(c) LU map approach [10][12] where the map of L and U
(i.e., A and its fills) is determined by the preprocessor; for
a full matrix, only O(nz) storage is required for the map of L
and U, the same as for the numerical values of the matrix itself;
this procedure appears to be as fast as the method of (b)(see
Table A3) and for these reasons (b) is not often used.

Detailed speed and storage comparisons of (a) and (c) for
two FD examples are given in [2][11].

In this report, the LU map approach is chosen because of its
reduced storage requirements. The storage map is further reduced
by compressing the data structure for adjacent non-zero matrix
positions, i.e., dense segments of rows/columns. Thus, the storage
of the structure of a full matrix would be 0(n), since each row/
column could be specified by the address of the first row/column

position and by the row/column length (n).

(6)

e s |

- e ——

It will be shown that recognition of such structure allows increased
solution efficiency for cache '"scalar'" machines and can be expected
to vastly improve the performance of vector processors. Besides
preparing a map for the numerical solution, the symbolic preproces-
sor - far faster than the numerical solver for large matrices -

is useful for predicting solution times and for optimizing the auto-
matic or interactive partitioning of the solution when a backing

store 1s used.

€ Vectorization

1. Vectors and vector instructions

Closely associated with the condensation of the storage
map of L and U by recognition of higher level structure is the
efficient processing of this structure by exploiting two features
of modern scientific processors - pipelining and parallelism.

The following discussion of the use of these features will be

quite simplified; further descriptions and rationales will be

presented in Chapter 2.

We will use the word vector to mean an array of data. Thus,

T YT

a vector operation is an operation on arrays. This includes
row/column operations on matrices, operations on submatrices
(blocks), etc.
For purposes of later reference, we distinguish between
(a) a simple vector operation, to replace the

Fortran-like operations

5

DO I M=1, N

g I C(I; (M) = A(I,(M)) o B(Iz(M))
S
(7)

Lo

y

ol G g ey w‘rJ

o

PR

v e

where o indicates an arithmetic or logical operation and where
Il(M)’ IZ(M)’ and 13(M) are lincar indexing functions of the
form Ii gy b Msi where ay and B; are arbitrary; thus, with
a=+, a. = 0, Bi = 1, the arrays A and B are added to produce
the array C. If o = %, I1 =M, 12 = 1, and I3 = M, a "broad-
cast" multiply (multiplication of a vector by a scalar) results.

(b) a higher level vector operation to replace

the triple (or double) loop

DO 1 J =1, Nl
DO 1 K =1, N2 %
DO1 L =1, N3 (4)

1 G000 (R T (030 = AT 03) T 00, 10033 o BT, (3),1,08),
1,(1))

where Ii(M) - TR MBi.
Computationally, the important characteristic common to

(a) and (b) is that only one vector ''startup" is required in each

case. This startup may include time to determine N1, N2, N3

in a convectional (scalar) machine and/or to fill the arithmetic

pipeline in a vector processor. In contrast, the "operate"

time includes those operations that must be repeated for each

pass through the (lowest level) loop, and will include floating

point arithmetic, in addition to array indexing and loop termination

test, depending on the machine architecture. In general, fewer

vector startups result in less time devoted to overhead calculations

and thus a higher overall efficiency.

(8)

e

[z

v ¥

TE v e

2. Vectorization efficiency

This efficiency may be quantificd as follows. The

th

computation time to perform the i~ vector operation is

T =t R + T
1 Si 1 Opi (5)
where TS is the startup time, Top the operate time, and r,
i i
the vector length. If Ts and Top are independent of i, then
i i

the time to perform m vector operations is

m 3
|

T *=mr, + 7 I 7.
S 0P ji=1 1 |

Since the operate time Top is the useful computation time, define

the vectorization efficiency as

operate time !
]

startup time + operate time

m
(Top/Te) (T x3/m _
- (6)
|

B LWL T

hne~3

_ 1ri/m)
i

m
Although Top/TS is a machine parameter, the quantity i;eri/m = Lave
is problem-dependent, and identifiable as the "average vector

length." Note that an efficiency of .5 is achieved when the

average vector length is equal to the ratio Ts/Top'

Although (6) usually applies to only a single class of

(9)

o

v AN

,
b

vector instructions (since Topi is assumed constant) similar
formulae can be derived from (5) when several classes of vector
instructions are involved-. .In the factorization problem, we
will show that the inner loop consists of a vector multiply

and a vector subtract, each of the same length. It is easily
demonstrated that the efficiency obtained from (5) is then the
same as for a single instruction with startup and operate times
equal to the sum of startup and operate times for a subtract and

multiply. The average vector length of the single time-equivalent

instruction is therefore a useful concept.

CHAPTER 2. VECTORTZED CGENERAL SPARSITY ALGORITHMS

A. Row vs. Column Ordering

"

For purposes of this discussion, assume that the equations
represented by A x = h cannot be locally decoupled, so that only
single rows/columns may be pivoted upon at a time (see [13] for
multi-row elimination). Associated with an n X n matrix, n
pivot steps can be identified, each (rth) step involving a

th

division of the r row or column by the pivot element and a

sequence of multiply-subtract operations involving the rth
row or column and other rows or columns of the matrix.
Although we will have reason later to study a variety of

factorization algorithms that involve backing store and arch-

itectural issues, for the present two rather conventional
procedures will be compared.

a). Row-ordering

Let
W07 - 6 o
S RO AL (8)

where the subscripts on the vectors correspond to beginning

: (0) _ (0) .
' and ending column numbers, and where u r,m ar,m 3 zr,m ar,m .

The row-wise factorization step is described by

() (T (k) T (k-1) T k-1
Lyt) (2541 ,0)7) (g1, l) (u 1('+1 1)1) } = Ep x Ypet.n (9)

o P

(11)

o

o R

TH Y N

_ {r=1]
Br+1,n lir+l.n

rr

- #lr=1)
£l,r B £l,r

The forward and back substitution steps require

of L = b, Ux =y. Using the same vector notation
X ™8y BR®F g

¥3 = by
= T
Yp = (B, - (£1,r—1) g X1,r-1)/£rr e
x © Iy
X = - (u)T X r =
T Yr —1r+1l,n * =r+l,n

the solution

as (7-8)

| (¥ COERY, (10)

n-1,n-2,.:.1

The row ordering of L and U requires the inner product of two

vectors.
b). Column-ordering
Let
x [, 0] £ SRR Ry
L L £r+1,n £r+1,r
(k) (k)
ur,r £n,r
L - - ot
(0) _ £0) o : : :
where um,r = am,r y tm,r am,r . The columnwise factorization
is
[,] (k-1)
Ykel,r lik+1,1j
———— = |- == -u L)<l [r-1
Z(k) 2 (k-1) k,r =k+1,n
=r+l,n rr+1,n
(12)

4
. \#w‘i

(11)

(12)

Lo ¥ B

TN ™ e

- (r=1)
£r+1,n -Jl' Yr+l,n -
rT
= o hE-1])
My or o 21,7

and the forward and back substitution step 1is

(0) _
Xl’n —_— 3
-1 " .
Xif},n » X§:1,% - % By r=1,2,...n-1 (13) ’
{(a) _ _(n-1)
X1,n - L1,n
e xr(ln)/unn
) , A¥*1) _
§1Tr “E5.» Xp U1,r-1
r = n-1,...1 (14) |
S
¥ © % /urr

The choice of row- or column-ordered algorithm can be significant
for a scalar processor (to be shown experimentally later). For

a vector processor having an efficiently-implemented inner-product
instruction, row ordering is preferred; however, a processor

with chained multiply-add arithmetic units such as the Cray-1
clearly suggests use of column-ordering. The reader will
recognize, however, that only the forward and back substitutions
need be changed to accommodate row-ordering since Uy ™ 1 and

lrr = 1 in the row- and column-ordered methods, respectively.

These options are available in subroutines (VMBPR, ZMBPR) and

(VMBPC, ZMBPC) respectively in the software package of Chapter 3.

(13)

o

> AR

B. The LU Map Approach and Its Symbolic Vectorization

1. Introduction

The purpose of the symbolic phase of Figure 1 is to determine
the fill characteristics of A, i.e., the exact structure of L and
U. This information is used by the numeric part to reduce the
solution time (Gustavson [10] cites a factor of 2-3 for the
LU map approach).

To acquaint the reader with this approach an example using
Gustavson's '"scalar'" map 1s shown in Table 2. Special note
should be taken of

(1) the fill positions detected by the symbolic phase in the
generation of the LU map;

(2) the use of map indices in the numeric solution to
extract information from the numeric arrays A, L, and U;

(3) the use of an expanded current column (X array), requiring
zeroing, expansion, and contraction in the loading and storing
process (see [10] and page 28 of this report for alternative pro-
cedures) ;

(4) the opportunities for the use of (simple) vector opera-
tions in the numeric solution, as evidenced by the indexed array

operations marked "vector".

It should be pointed out that fill detection is essential to
any sparse matrix factorization algorithm. The LU map approach
exploits the fact that this costly process need be performed only
once for a given matrix structure, allowing multiple solutions
with different numerical values - as occurs in a Newton lineari-

zation process.

(14)

oh

PR RREY - gy

IR ¥ BN

A

1l

from
user

gere-
rated

sym-
bolic

gene-
rated

nume -
o

tacto-
,‘ z2a-
tion

(15)

30002 3 0 0 I o ! 2
04 210 0 4 2 I 1 | 0
|
g 2.6 03 LU = 0 /42 5 !-1/2 } 3
G 1085 0 1/4 -1/10 l27/10' 13/10
2 05 1 & 2/3 0 3/5 ,13/27| 67/54
current
column
matrix completely-factored matrix
A (column-ordered numeric values of A matrix)
$62:4:2,0,2,6,3,8,5,1,2,3,1.,5
<JA (JA(J) p01nts to beginning of jth column of A in IA)
5330, ,12,16
JA (column- ordered_};ﬂ; of row numbers of A)
By Sa2s 3,00 05055 122005, 1,5,4.5
(JL (JL(j) _points to beginning of jth column of L in IL)
1,:2,4,6!,7
IL (colum n-ordere g list of row numbers of L)
< P 3L-_ﬂ—- fill
Ju (JU(j) points to beginning of jth column of U in IU)
’1’ b ’41
GU (column ordered list of row numbers of U)
IZ 1 3“‘4__,«fi11
L (column-ordered numeric values of L)
2/3,112,1/4,-1/10,3/5,
§ (column-ordered numeric values of U)
Z,_s_’_’_’__
!WI (orderad nureric v=lues of diaconal)
3,4,5,_,»_
(a) Example up to factorization of fourth column
Table 2. Example of use of LU map in factorization

IR

~

Zero expanded current column (X array)

Load current column with fourth column of A

X(2)=1
X(4)=3] vector
X(5)=1

indices ¢
from IA‘

Factorize fourth column

L aee B ac bl o

T TR Ry

indices
from ILl
of pre- |
vious

columns

X(3)=X(3)-X(2)*L(2)=0-(1)(1/2)=-1/2]
X(4)=X(4)-X(2)*L(3)=3-(1)(1/4)=11/4
X(4)=X(4)-X(3)*L(4)=11/4-(-1/2) (-1/10)
X(5)=X(5)-X(3)*L(5)=1-(-1/2)(5/5)=13/1

A A

i |starting
indices
from JL

DI(4)=1/X(4)=10/27
X(5)=X(5)*DI (4)=13/27

4. Store current column

starting I

U(2)=x(2))
U()=X(M vector
L(6)=X(5)

indices from

L—= O\) D
pe— U 1 0O

indices
from JL,JU|

Ll LU ot
tcurrent column

(b) Steps in Factorization of Fourth Column

Table 2.

Adoa

g

Example of use of LL

(16)

L map in factorization

i vector

WS TN W

The details of the symbolic map generation arc left for
Chapter 3. lowever, the following two sections arc intended
to give insight into this process by discussion of vectorized

data structure and symbolic operations on it during the factori-

zation process.

R

2. Vectorized list data structures

Consider a column of a sparse matrix having the non-zero
row positions shown in Figure 2 (before fill). This structure would

be described in a conventional ordered list as

31,32,..536539,42,43,...47 (15)

Such a list enumerating all row positions will be termed scalar
storage. Clearly, the list can be shortened by identifying sets of
contiguous positions (vectors) and retaining only the first and last

row numbers, viz,

w

1,36,39,39,42,47 (16)

This form is natural to looping operations for a scalar processor,
where pairs of numbers are directly usable as upper and lower loop
indices. Alternatively, the initial row position and the vector
length could be stored as

3156,39,1,;42,6 (L)
This form is favored by vector processors with hardware that counts
down vector arithmetic operations to terminate a vector operation.

Another choice, preferred when a significant number of single-
ton (scalar) positions are present, represents a vector of length

one with a minus sign prefixing the row number as

51536 ,-59,42 ,47 (18)

This latter structure has been adopted in this report.

pr———— ey

i ‘j

3. Vector fills

The multiply-subtract operation of (12) can result in pro-
duction of fills that must be detected in the symbolic phase. In
Figure 2, the process of multiplying the kth column of L (termed

a preceeding or recalled column) by M and subtracting from the

’

Before Fill After Fill
rth column
Sl 31
th 32 32
k column 331 (31,36) 33
34 34
35 35
36 36 36
37] : S
38 : ' 38
39 _391 -39 (31,47) |39
(36,43) {40 ; . 40
41 ' ! 41
42 42 2
4 43 43
44 44
451 (42,47) 45
46 46
47 47
i

Figure 2. Example of vector fill, with data structure
description (scalar indicated by - sign)

——

r™ column of L (termed the current column) and U is depicted. The

zero-valued positions 37,38,40,41, which initially separate two
vectors and a scalar, are filled by the dense vector (36,43) in

the kth

column.
The symbolic phase produces the LU map by scanning the number
pairs representing the vector structure of all the preceeding

E columns and the current column to determine zero-valued regions of
’
»

(19)

- THG SN o e

the latter covered by at least one of the former. These are the

fill positions.

Q. Comparison of Scalar and Vector Sparsity Methods

1. Introduction
Although one could expect to reduce storage by compacting
vectors in the data structure and could hope to exploit the
structure of machines architected to efficiently process
looped instructions, it is less obvious that conventional
(scalar) machine performance would benefit from vectorization.
In this section we study both the storage and the speed
issues in some detail, showing quantitatively the advantage of
vectorization even for one of the most recent scalar processors.
2. Storage
In Gustavson's LU map approach, the column ordered map of
L and U is saved in arrays IL and IU. Thus, for every numerical
value in L and U, there is a symbolic value in IL or IU (Table 2).
Now consider an LU map with m vectors of average length 2.
The scalar and vector maps require mf% and 2m locations respectively,
exclusive of singletons. Now consider the symbolic (2-byte) and

numeric (8-byte) storage. Define
vectorized storage

storage factor
scalar storage

which becomes
2(2m) + 8(mR)

storage factor
2(m) + 8(my)

.4

L

Thus, a vectorized map will result in a 20% storage savings as

L > =,

(20)

3. Speed: symbolic
A speed improvement is possible in both the symbolic and
numeric processing stages.
: Consider again in Figure 2 the symbolic process of creating
a vector fill. Since each vector is described by a pair (beginning
row position, ending row position), the length of the data
structure does not depend on the vector lengths. Similarly, the
operations performed on this structure to determine fill are not
changed if, for example, all vector lengths are doubled. Obviously,
this is not true for the scalar approach, where each row position
must be examined separately for fill.
In Table A3 of the appendix, symbolic solution times are
E given for both scalar and vector versions, each processing a
family of finite element matrices. For matrices of dimension
9 and 49, the scalar version is faster; the vector version is

nearly three times the speed of the scalar for a matrix of

i dimension 961.

4. Speed: numeric

A more important comparison of the scalar and vector approaches
involves the repeated numerical processing stage. Although
computer architecture characteristics - particularly the extent

of instruction and operand pipelining - are quite influential

vy YTy T

here, nonetheless it is possible to construct a simplified model
of a typical vectorizeable operation and discover the conditions

in which the scalar approach may be preferable.

S WS

TE v e

(21)

" . . i vt > ﬁ
L g Rp— . g

packed expanded
kd\ th
r
column column
I{
37
38
3] | / 39
2 37 20
1 38 J N 5
421 1 REE
43] | “L 143
47 1 44
48 45
49) | [46
48
49

Figure 3. Subtraction of packed (kth) column from expanded (rth)
current column
The most time-consuming part of the factorization algorithm
is the multiplication and subtraction step of (12). The numerical
values of the kth column are assumed packed as illustrated in

Figure 3. Multiplication by U, , can therefore be performed in

a loop or vector mode without reference to the row positions.
However, the subtraction of (12) involves knowledge of the row

positions; this is shown in Figure 3, where three segments

of the

rth column. This in turn requires that the row position must be

column are depicted being subtracted from the expanded

addressed either one at a time - one for each numerical value -
or in a vector sense - the beginning and ending row address of
a dense column segment. A Fortran implementation of this sub-

traction process for a column in the numeric phase would be of the

form

DO 2 J=N1,N2 N3=IL(N1)
K=IL(J) N4=TL(N1+1)
X(K)=X(K) - Y(J+L) PO 2 J=N3,N4

2 X(J)=X(J) - Y(J+L)

Scalar Vector

oA N

Y e

o4

Here, the current column (X array) is addressed through the IL .
array in the scalar case; in the vector case, IL contains the
beginning and ending row numbers of a dense segment of the kth
column.

Clearly, the vector algorithm requires more startup time -
to compute N3 and N4 - but less loop execution time than the
scalar case, which involves indirect addressing.

It happens that these simplified loops are not representative
of either the factorization or the substitution steps. A more
extended test is given by the loop timing program of Table 3,
where vectorized and scalar versions of both inner product and
broadcast multiply-subtract implementations of the inner loop are
timed. The inner product is usually associated with a row-ordered
substitution process (see Section A) whereas the broadcast operation
is used in row-ordered factorization, column-ordered factorization,

and column-ordered substitution. All loop operations may be

characterized by a loop startup (Ts) and a loop execution (Top)

in the manner of Eq. (5); experimental results are given in Table 4

in terms of these parameters.

Loop description Startup Execution
(usec) (usec)
Vector inner product 296 1.6
Scalar inner product Al 1.7
Vector broadcast-subtract 2.8 2.24
Scalar broadcast-subtract « 1z 2.42

Table 4. Loop timing results; Amdahl 470V/6,Fortran H, double precision

Comparing the two broadcast loops, the vectorized version has a

(23)

o Ton o gy

Ceeee TIMING TEST FQR INNER LOOPS OF ALTERNATE FACTORIZATION

¢

22

“
o W

2
3

AND SUBSTITUTION ALGORITHMS
IMPLICIT REAL®8(A=H00-2)
OIMENSION X(26000)9v(26000)» JC(50000)
00 12 S 10268889
X(J)=1.0-5¢
Y(J)ax(J)

00 1 J=1:5040

Je(J)=y

XAz1e

READ(6922)LVECT

NT IMES=50080/LVECT
WRITE(6222)LVECToNT IMES
FORMAT(2185).

La§

Nis1

N2sLVECT

Ceese TEST FOR BUSTAVSON FACTORIZATION (SCALAR)

CALL TINME(S)

00 3 Ms1sNTIMES

00 2 JsN19N2

K= JC(J)
X(K)aX(K)=XAeV(JoL)
CONT INVE

CALL TINE(101)

Ceeee TEST FOR QUSTAVSON Fe & Be SUBe (SCALAR)

1

SUMsd <D0

CALL TIME(S)

00 7 M=1sNTINES

DO 8 JsN1eN2

K=JdG(J)
SUMSSUM=X(J)®Y(K)
CONTINUE

CALL TIME(121)

Ni=9

D0 11 J=1950800:2
JCCJ)=URAND(INIT) e 19981
JC(J*1)=LVECT+JC(J)=-1
NS=100d99

Ceeee TEST FOR VECTORIZED FACTe AND SUBSTITUTION

CALL TINME(O)

DO 5 M=s1sNTIMES

VT is@

NisNled

N3sJC(N1)

NiasN1+]

N4z JC(NY)

JDIFFs IVTI=N3+1

00 4 J=N3»Na
X(J)sX(J)=XAeY(J+JDIFF)
IVTI=JDIFF+N4
IF(N1e6TeN5)60 TO 9
CONTINUE

CALL TIME(1921)

Ni=g

Ceoee TEST FOR VECTORIZED INNER PRODUCY

19

14

15

TAd

AL

K3

SUMs@e 0P

CALL TIME(S)

00 15 M= 1oNT INES
Vi i=@

NisNYel

N3=JC(NY)

NisNYe

N4sJC(N1)
JOIFFe {VT 1=N3+1

00 14 J=N3IsNé
SUMSSUN=XAeY(JeJDIFF)
IVII3JDIFFeNe
IF(N16TeN5)G0 T0 ®
CONT INUE

CALL TINME(1901)

60 10 6

END

v

Table 3. Timing program for inner loops

(24)

e

L Y

o

larger startup but a smaller loop e¢xecution time. The total
loop timings become equal when (2 is the loop length)
+72 * 2,428 = 2.8 » 2,724%
or £ = 11. Thus, a scalar processor is found to operate pre-
ferentially on vectors; as 2 » «» the loop execution time of the
vectorized version is 2.24/2.42 = .92 the time of the scalar.
These timings will be used throughout the report to estimate

the computation times for large problems. To illustrate this use,

PRI

consider the problem of estimating the relative times of scalar
and vector factorization of the 961 x 961 matrix of Table A3 using

broadcast inner loops. The average vector length (que) of this

don

loop is taken from Table AZ as 6.85 elements. Therefore,

scalar loop time .72 + 2.42(6.85)
= = .95
vector loop time 2.8 + 2.24(6.85)

This compares with a fraction for the factorization step from Table

A3 of 1146/1309 = .88. Both ratios decrease for the smaller matrices

in the finite element family studied, as Lave becomes smaller and the

vector loop startup becomes more significant.

D. Symbolic vs. Numeric Speed

As the average vector length increases, the symbolic processing
time should decrease relative to the numeric time. To quantify this
concept, consider a recalled column of L with m vectors of average
length Loud being multiplied by a scalar and subtracted form the
current column. The symbolic processing can be expected to be
proportional to m and the numeric proportional to mLsub' Therefore,

N(numeric processing time)
(19)

S(symbolic processing time)

(25)

This simplified analysis yields surprisingly consistent experi-
mental results. The S is the average vector length of the subtract
operation in the inner loop, a quantity that can be measured experi-

mentally and calculated precisely for the dissected finite element

ol

grid. 1In Table 5, the K of (19) is shown for all the sparse matrices
studied. For the wide range of matrix size and structure,

24 £ K < .31,
Using K = .25, one can estimate from Table A3 the N/S ratio for the
general finite element grid as

N (.13)2"

S n-2.96

giving for a 126 x 126 grid N/S = 4. Since the symbolic phase

involves mainly comparison operations with ordered pairs of numbers

(to establish fill regions) it can not be expected to be itself

vectorizeable. Thus the above value for K would be much smaller if

both phases were run on a vector machine. The symbolic phase -

viewed as a vectorization step - would most efficiently be executed

on a scalar processor, and the numeric phase on a vector processor.
As the N/S ratio becomes larger, the symbolic step becomes

useful as a simulation tool. The number, length, and type of

vector operations can be determined in the symbolic and, knowing

the functional characteristics of a processor, computation times

can be predicted. This is especially useful for estimating solution

times of vector processors that are not conveniently available.

Such a simulation program has veen devised and has been useful in ;

obtaining precise vector-related structural information such as

Ad s

displayed in Tables AZ and AS.

(26)

TE v e

- - R T "‘“'i

o

e AR e
9x9 (2 x 2) - 53 1.97 « 27
49 x 49 (6 x 6) .69 2.92 .24
225 x 225 (14 x 14) 1.12 4.42 225
961 x 961 (30 x 30) 1o 6.85 » 25
2. Electric Power Problem .676 2.6 . 26
3. Aircraft Landing System .500 1.6 .31
4. Electronic Device Model 4.76 16.3 « 29

Table 5. Experimental determination of K in Equation 19, for an
Amdahl 470 V/6, double precision, Fortran H.

E. Inner Loop Considerations

1. Introduction

For large matrices, the multiply-subtract inner loop becomes
the dominant computation. To illustrate, inner loop operations
for the factorization of the largest finite element matrix of
Appendix A involves 59026 inner loop startups and 404587 loop
executions. From the benchmark of Table 4, the inner loop time

can be estimated as

T (59026) (2.8) + (404587)(2.24)

inner
1.07 x 10° psec.

i

This is 81 percent of the measured factorization time of 1.309

sec. of Table A3. Since this estimate accounts for the time devoted
to the multiplication of a scalar from U by a column from L, the
percentage of time devoted to the inner loop computation will

increase with the column density of L; from Table Al, this is a

logarithmically-increasing function of grid size.

(27)

[z}

A s

NN

k> 8

In the following sections, issues related to the implementation
of this loop are discussed; the scalar-vector comparisons have
been made in section C4.

2. Expanded vs. packed list structures

The inner loop of the factorization involves a multiply of
a packed column of L by a scalar and a subtraction of the result
from the current column being factored. The multiply can be carried
out in one vector multiply; the subtraction must be performed with
attention to row numbers of the minuend and subtrahend. This
requirement suggests at least two procedures based on the data
structure of the current column.

1) If the current column is fully expanded, subtraction can take
place using the address of the initial row position of the current
column as a reference; as illustrated in Figure 4a, a vector in the

packed kth column can be subtracted from the rth

column with only
a single address offset calculation. The current column must be
expanded from the initially packed matrix and must be compacted
after the last subtraction, usually a trivial 0(n) process. Also,
the storage demanded by this expansion process is usually not a
problem even with widely-separated elements or blocks of elements.

2) If the current column is packed with an accompanying vectorized
list description of the row numbers of L and U, then subtraction
involves searching the list until the row number(s) of the minuend
are in the range of those of the subtrahend; in Figure 4b, for example,
the current list would be scanned for subtraction of the scalar in
row 7 and the vector in rows 16-18; the locations of the numerical

values in the packed current vector would then be calculated for

the vector in rows 16-18 as (for example)

(28)

PR

T T T P R T e WY

Ad A

Y

.

T " e Gl

packed expanded
k th rth
column column
20
9]
18
[17]

[v]a] [3[2]
-

zero- varied positions of LU

EEBR

e o

o BT T]

D all offsets calculated
from first cclumn position

(a) Expanded current column of LU

packed packed
k th rth
column s'rip
z
72
a
70 -7,16,18
20| |a2] = column breck
19(52(41 [__
9th position 18151140 \
b Gl 5,7,10,13,15,20,9,10, 12,18, etc
16118 [261 : gt
15{17|35 kipoe
18] 13/16]33 =HRe \\\\
17 1211533 offset offset
[16] 1t]i3132 calcul :ted C21CUI?§ed
G113 31 from 5 rom
\{ 70200
6[iols
151917

(b) Packed current column of LU

Figure 4. TIllustration of subtraction operations on
expanded, packed list structures.

(29)

NN T

T W

L Y

"

[(7-5)+1] + [(13-10)+1] + [(16-15)+1] = 9

denoted on Figure 4b. Thus, a running total of the offset of
each vector of the current column must be maintained as the list
is scanned.

The scanning and address calculation is clearly overhead which
must be small relative to the subtraction time itself. Thus,
the number of vectors - represented by the 1list length - must be
small and their size must be large. This is in fact a characteristic
of matrices arising from large FD and FE problems, where each
column will have on the average 4-6 vectors with an average length
of 30 or more numerical values . Smaller FD or FE problems or
matrices not having these characteristics are more efficiently
solved with the expanded storage of (1). For these reasons, the
programs to be later described were written using both procedures:
the program using only local store for small matrices will have
expanded column storage; the program allowing a backing store will
use a packed current column throughout. The third data column of
Table A3 and the seventh column of Table A4 yield a comparison of
timings resulting from expanded and packed current column storage:
e.g., for a 961 x 961 matrix, factorization requ res 1309 msec and
1667 msec, respectively. The relative speeds as a function of n
show a fractional difference decreasing toward 1 between the two
timings, the above ratio being only 1.22. Undoubtedly, the increasing
L with problem size is primarily responsible for decreasing |

ave
overhead in traversing the packed column lists.

3. Sequencing of the multiply-subtract operations
Another inner loop issue introduced by vectorized solution is .

whether the multiplication of a column of L will be performed in a

(30)

3. Variable local store

bt A U i

e B

\

vt

single vector operation or whether the multiplication and subtraction
will be performed within the same loop. The latter has the advantage
in a scalar processor that fewer loads and stores are necessitated,
since the result of the multiplication is available either in a
register or in cache memory for the following subtraction. However,
fewer vector multiplies (i.e., startups) are required for the former
process. Thus both options should be available in a general program.
Note that this consideration appears in the forward and back sub-
stitution as well. The third data column of Table A3 shows the
significant impact in a cache machine of combined multiply-subtract
operations (the number in parenthesis is the timing with separate
operations). For a 961 x 961 matrix, the ratio is 1773/1309 = 1.35
for the factorization and 156/113 = 1.38 for the forward and back
substitution.

4. Assembly-language programming

The speed of an algorithm is related to the language in which
it is programmed. Thus, it is important to document the extent
to which an algorithm is influenced by programming at least the
inner loop(s) in a high level language such as Fortran.

An assembly language version of the expanded-column factorization
algorithm of Figure 4a was written, with the inner two loops
(k=1,2,...r-1) of Eq. (12) coded ‘n assembly language. Table A3
gives timing comparisons vis-a-vis a Fortran H implementation.

For a 961 x 961 finite element matrix, the ratio

Fortran H timing 1309
= = 1.41
Assembly timing 922

shows a significant but not atypical advantage in machine-dependent

coding. This depencence on the quality of Fortran code must be

(31)

minimum will in general be quite hraad Thon oL

—

-

E N

)

A

borne in mind when other timing comparisons are made in this report.

F. Partitioning

1. Introduction

Partitioning the solution of simultaneous linear equations
refers to the division by the user of matrix and/or LU storage
between a local store (either real or virtual) and a slower backing
store accessible to the ALU only through the local store. The
local store contains that part of the matrix on which computation
1s being performed, so that read/write (I/0) operations are
necessary between local and backing store to carry out the complete
matrix factorization. The purpose of this partitioning is either
(1) to meet the storage limitations imposed by a real memory too
small to contain the complete factored matrix, or (2) to minimize
the cost of computing in a real or virtual system, where costs
depend on both storage used and user-prescribed I/0 operations. The
sparse matrix software to be described in the next chapter has
considerable flexibility in performing this partitioning even
before the matrix is numerically solved. Wise use of this flexibility
requires modeling both the computing system and the matrix structure.
The purpose of the following discussion is to provide insight into
the issues involved and, by example, specific guidelines for the
user of the software.

Before proceeding, it is worth noting that many of the concepts
and even some of the detailed analysis to be presented applies to
other memory heirarchies such as register-cache, register-main, and
cache-main, where a small fast memory communicates with a large slow

memory .

(32)

Y T VO VT e Y

Gas b U

T TR

-

v TAd A

NN

n

2. Fixed local store

a. Introduction

The simplest model for analysis is that of a processor with
fixed local store. In this environment, common to large scientific
processors, the I/0 operations are managed by either (a) the
central processor, or (b) a peripheral processor sharing the local
store with the central processor. In the first case, the total CPU
time would be the dominant issue; in the latter, the ratio
§ = (I/0 time)/(CPU time) would yield the fraction of time that
the I/0 processor is busy, so that when § > 1 the CPU must wait
on the I/0 processor for its operand supply. This section will
concentrate on analysis of the § ratio, since the former will be
a special case of variable storage time minimization (b=0) considered
in the next section.

Clearly, both the CPU time and storage depend on matrix structure
so that an analysis must be aimed either at obtaining a precise
evaluation of a given matrix structure or at establishing general
relationships for a class of matrix structures. In preparation
for the latter, the specific case of a full matrix will be studied
to gain insight into the analysis procedure. The reader may refer
to [17] for alternate partitioning schemes that may result in

less I/0 traffic for full matrices than the one to be studied

here.

(33)

b. Full matrices
In Figure 5, a full matrix of size n (=6) is divided into k

partitions of size Sk’ each having p = n/k columns. The number

o

of writes to backing store is nz, assuming that the entire factored

matrix must reside on backing store. The number of reads is

1st 2nd kth
strip strip strip

26 aagitac e G

N

XX llx x|x x

X f‘\y Xkx X

x xlxSxlx x
S

X XxX]x x\x x

x xlx xIxNx

(R

9x2 + 5x1 = 23 reads

Figure 5. Counting reads in a factorization

k-1
= g POI) ., pz(k—r)2
o r=1 2
_ p(p-1) (k-1) (k) + p%(k-1) (k) (k-%) 03
4 3

With total storage S and strip size Sk’ then k = S/Sk and p = SkAﬂr
The second term of (20) easily dominates the expression, and the

dominant term can be written

P =S (21)

If the 1/0 transfer time is ¢ seconds/byte and the floating

B

{ point operation time is d seconds/(multiply-subtract), the ratio

.~

(34)

i

—

od

L ¥ Y

(22)

§ = CNr/dNo

p

With typical values* ¢ = . 25xi0" 8

6

and d = 2.24x10°

and assuming
64-bit words, for large n

8

[(8n%)2(.23x107 %)/ (24 $.)1/12.24x10"%n%/3]
.824n/Sk

Thus, when n/Sk 1 (only one column is in local store), a nearly
equal time is devoted to arithmetic computation and to I/0. For
Sk larger than this absurdly small value, arithmetic time predominates.

For a vector processor such as the Cray 1, where d = 12.5x10_9
and ¢ = 1.56x10_8, the ratio becomes

§ = 10.n/Sk

and a local store of 10 columns would be adequate to keep the
processor supplied with operands.

c. Sparse matrices

For families of sparse matrices with a relatively constant
column density, the storage of L and U is typically S = 0(nlog n)

or even S = 0(n) and the computation time is typically O(nl'5

)is 1T
contrast to O(nz) and O(ns) respectively for a full matrix. Thus,
the asymptotic ratio of computation to storage is lower for a sparse
matrix, hinting that the I/0 transfer may become a more significant
cost factor. It will be shown that, asymptotically in n, I/0 can
be a less significant factor for sparse matrices; further, some
guidelines will be established for the estimating the growth with n.
The full matrix model of Figure 5 may be generalized by

considering a matrix of k partitions, each with Sk = S/k storage.

This does not require that each partition have the same number of

*For the Amdahl 470V/6 system at the University of Michigan.

o

% RN

columns as above, allowing more columns in the usually sparse
initial column strips. As shown in Figure 6 the L storage is
assumed distributed throughout each strip so that

a) S = § + (k-r)SL : Sk,U S

+ (r-l)SU je S L R s
o] 1

Uo 1
b) the non-zero structure of each column strip is distributed
so that each strip must be recalled* for the factorization

of all succeeding strips.

S S 25 3S
U, U, U, v
+ + +
S S s
U, U, u,
S
Ly
+
35S
L S
-~
2s
Ly

Figure 6. Sparse matrix partition

The total storage S is then given by

k
=7 (S + S

) + (k-1r)8; <+ (r-k)S,
r=1 Lo UO L1 Jl
= k%, + 0(K) (23a)
where S, = S = S, . The recalled storage is then
1 L1 U1

*1t will be assumed throughout this report that only complete L strips
can be recalled.

(36)

O 7 5 S

TE Y e

k-1
N.= I (8 * rS J)r
E r=1 Lo Ll
& 5331 + 0 (k9 (23b)
3
Eliminating S1 from (23a) and (23b) gives
_ k%5 _ S (24)

N = — = ——

r % 38y

the same as (21) for a full matrix.

To experimentally corraborate this simplified expression,
Table 6 shows the total number of reads of symbolic and numeric
information during the factorization of the finite element matrices
of appendix Table A4, together with the value calculated from (24).
The error is within 10 percent for large matrices, the discrepency
probdably due to assumption that all strips must be recalled in the

factorization of the current strip.

Sk SZ/SSk Experimental
w232 SLE SIES
.101 Gt w22
.0355 .88 .83
.006500 4.8 4.25

Table 6. Comparison of calculated and experimental recall reads
(in megabytes). S = 306,000 bytes.
As a result of (24), for a constant Sk for S = 0(n log n), 0(n)
:
“ 9 2 25

Nr/Nop = Ofn""(log n} "), U(n" ") (25)
indicating that relatively fewer reads are required for a sparse
matrix than for a full matrix, for sufficiently large k and n. A
more qualitative analysis will shortly show an excessive number of

reads can occur for typical values of n.

(37)

- e ey

o

PV IR

Alternatively, Equation (25) can be used to estimate the growth
of local storage necessary to maintain a prescribed Nr/Nop in the
cvent 1/0 does become significant. For the model, with S = 0(n),

2 S
Nr/Nop = 0(n)/Sk (26)

so that a slow growth in local storage will maintain a constant ratio.

A key assumption in the above model was that all preceding
strips had to be recalled for current strip factorization. At the
other extreme, each strip could require the recall of only one
preceding strip, as in an appropriately-partitioned band matrix
(Figure 7). It is easy to show for such a case that Nr/Nop = 0(1).

Tridiagonal matrices - forms of band matrices - clearly have a

similar dependence.

local
storage
| window

\

movernent
of
window

write

old

column
read

new
Irow

Figure 7. Banded solution

In general, sparse matrices have a structure that varies between
local and complete strip connectivity. Thus, with a fixed local

store, the growth Nr/Nop would be expected to be between 0(1)

and 0(n°>).

B e T

One caveat must be raised. Sparse matrices are inevitably
ordered so as to reduce fills occuring during solution. Ordering
algorithms can not be expected to detect strip connectivity, and

it is not uncommon for strips to have widely-distributed coupling

o

to.other strips. Thus, a strip storage equalization as illustrated
in Figure 8a may not yield a minimum number of I/0 operations, due
to scattered non-zero positions. A slight adjustment yields the

improved situation of Figure 8b.

Strip Storage: 9 10 8 I4 12 8
X X X ; X x} ” !
x X Ix x oTCes X X|{ XX
x{ ;xq—-&gcall of :x :x
x x Ix x lox L e X x} x x 1 x
X X X X Xj ¥ X %
! bx ' x!x
X! X xlIx x I x X XIX X
Ix o ix x % e ox
Sx2+ 4x =14 reads "4 x{+4xt = 8reads
(a) (5J

Figure 8. Reduction in reads by unequal strip storage.

d. The I/0 problem for finite element solutions 3
Although asymptotically the I/0 problem may be less serious for

a sparse matrix, the more important issue is whether I/0 will dom-

inate for a particular sparse matrix. An illustrative analysis for
the finite element family of Appendix A will show that a serious
problem can indeed exist even for the computationally-intensive |

factorization process.

B Y

(39

From the asymptotic formula for storage count in Table Al,

the read time can be counted as

i

4 T = T, (8%/35))

)5 e

2,4n
Ttr(124n 344)%2

/288, (z27)

where Ttr is the transfer time of a 64-bit word. The arithmetic

operation time is
5 3n
Top = Tar(39'5(2))
where Tar is the time of an arithmatic operation. Now define the

critical dimension as that value of n(=nc) for which Trw = Top;
for n > n_, T, will exceed Top‘

1/0 Transfer Time Local Store MFLOPS Grid size Storage (S) Time

(sec./word) (megawords) (megawords) (sec.)
ASC (1-pipe) 2x10”7 - 107° 1 =8 25, 132 - 1606 1.1 - 315. 7.3 - 13100.
ASC (4-pipe) 2x10°7 - 1076 1 -8 100. 60 - S88 .172*- 34. .16 - 160.
Cray 1 1077 1~ 4 180, PY% - 438 2.2 - 17.0 2.6 - 39.4

*Backing store not required

Table 7. Grid size for equal I/0 and operation times
on current vector processors

Table 7 shows that the critical dimensicn can be surprisingly small
for current vector processors. Ranges for the critical grid size
(= ch) are given for normal ranges of Ttr - corresponding to
commonly used disc capacity - and of Sk' An interesting case is
the Cray-1, where because of extraordinary processor speed, the
1/0 time will exceed the arithmetic operation time after 39.4

seconds, even using full I/0 channel capacity and addressable

local store.

(40)

T

PPN

R e o e — e pr—

€. The 1/0 problem in the substitution process
The 1/0 problem is proportionally more severe for the forward
and back substitution steps, where only a few numeric computations
are performed with each element of the recalled factored matrix.
Consider an arithmetic computation sequence where K arithmetic
computations are performed on the average on every L words in mem-
ory, by a processor with an operation rate of M floating point
operations/second (FLOPS). Then the local store must be supplied
from the backing store at the rate of
ML/K words/sec. (28)
In the forward and back substitution stages, the inner loop
instruction will be of the general form
X(I) = X(I) - LU(J)*YD (29)
where LU(J) contains the elemtns of L and U. Each such element is
used a single time in the two substitutions, so that (ignoring
array X and scalar YD) L = 1 and K = 2 in (28). 1If the LU array
is on a backing store, then this store is required to supply
operands for (29) and M/2 words/sec.
This is a prohibitive rate, as evidenced in Table 8. Here,

the processor utilization ratio given by

PUR = arithmetic operation time

I/0 + arithmetic operation times
are given for several of the current vector processors executing
the substitution formula of (29). The PUR is susally below .15
and becomes as low as .02.
It is important to note that this poor processor utilization

is dependent only on the machine system parameters, and not on

the matrix size, density, or equation ordering. Thus, the concern

(41)

L T Y

"

of Knight et al [19] for banded matrices is shown to be generalized

to the substitution process itself.

Processor 1/0 Transfer Time Mult.-Sub. Time PUR
(sec./word) (sec./op.)

ASC (1-pipe) 2x10°7 . 197 80 x 10°Y .28 - .o74

ASC (4-pipe) 2x10”7 - 1078 20 x 1077 .091 - .019

Cray 1 10”7 12,5 x 167 11

Table 8. Projected processor utilization for
current vector processors.

To support this claim of independence of matrix properties,
the experiments of Table 3 for the Amdahl 470V/6 scalar processor
can be used. The operation time of the inner loop has been
determined in Table 4 (=2.24x10 ° sec/operation), and the 1/0
transfer time given in Table A4 as 1.83 sec./word. The PUR is

then calculated as for all matrices as

2.24
PUR = = .55
deld 183

Experimentally, the same ratio can be determined from the components

of Tegs of Table A4 for the finite element family of matrices.

Matrix PUR
size
49 .61
225 « 58
961 + 56

Table 9. [Illustration of constant processor
utilization ratio.

ok

A

The results are given in Table

9; these show a PUR close to .55

for all matrices, and an asymptotic approach to this value for the

larger matrices. The small descrepency is due to the loop startup

and pivoting times not included in the above model.

At present, there is no known solution to this problem in the
substitution process. Either one must hope that the processor can
be utilized for other tasks while the I/0 is busy, or, in some

(few) applications, multiple substitutions may be carried on

simultaneously with the same factorized matrix.

(43)

Ad N

o MR

3. Variable local store

Local store is commonly variable as a result of a multi-
user environment, i.e., a large store is divided between two
or more users. If this large local store is virtual, then
1t will be assumed that the user is not assessed the costs
of paging or swapping from the system's backing store.

When 1/0 is handled by the central processor, the cost
of variable local store is commonly charged according to the
length of time and the amount of store used. Specifically,

the cost of a program execution can be written

cost a (CPU time) + a b (local storage) (CPU time)

a (1 + b (local storage)) (CPU time) (30)
where a is a charging coefficient (dollars/CPU-second)
b is a coefficient (pages_l) that converts the storage
costs to unit CPU costs.
The total CPU time is clearly c Nr' +d Nop' The local
storage must have a value 2 Sk to accomodate both the current
strip and the recalled strip. The cost can then be written

as a function of Sk for a full matrix solution with large n as

2
e cS
cost = afl + b(Sp+ZSk))(35k + dNOp + TOV)
K 1+bS cs?
= s (T5ph ¢ Splerm—ar—5 * i) (31)
k “op ov

e

K
§£(“1 * Sp)(ap + Sy)

where Sp is the fixed program storage and TOV is overhead
time not attributable to either numeric or I1/0 computation.

Although this cost functicn has a minimum at S, = Ya,a,, the

(44)

A T TS T e W

R \"""-l

i
3
-

minimum will in general be quite broad. The sharpest minimum

occurs when a, = a, or n = 41000 and Sk = 50 pages, for b = .01.
Even this minimum is broad; the cost does not exceed double
the minimum value for a,/7 < Sk < 6a, . For more practical
values of n, the local storage costs considerably exceed the
I/0 costs, and the former can easily be evaluated from the
first factor in (31).

To apply this analysis to a sparse equation system for
which (31) applies, consider again the finite element family
of Appendix A, solved on the University's system. A summary

of parameters and formulae pertinent to this calculation are

shown in Table 10.

Program storage Sp (pages)

Driver with arrays Tl

Solver with I/0 7540

System routines 7.8

I/0 buffers 43.0

Total 615/5:5

LU storage S (Table Al) (124n-344)22n
Tov O.Q SeC.
Arithmetic operations (Nop) 39.5(2°™
[/0 transfer rate (1/c¢) 1000 pages/sec.
Arithmetic operation time in 1.1x10°0 sec/operation

inner loop (d)

Table 10. Parameter summary

For n=5, a 961 equation system, it may be determined that

(3]

ay = 82.5, a, = 1.09, vielding a cost minimum at Sk = 0.5
pages. The estimated cost is plotted versus Sk in Figure 9;

the minimum is shown to be quite broad due to the relatively

(45)

% A

- 3

R

Cost per numeric solution - §

small cost of local store on this virtual memory system

(e.g., b=.01 implies that when Sp + ZSk = 100 pages, storage
costs become equal to CPU numeric computation costs). Several
correlations of estimated and actual solution costs has been
made. Figure 9 shows a rather large discrepancy due princi-
pally to the use of inner loop timing estimates only, the
failure to include substitution steps in the estimate, and the
assumption that Tov = 0. Note that Table A4 shows that,

for 2§, = 13k bytes, approximately .57/3.7 = .15 of the
factorization time is unaccounted for. It may be that this

overhead is compensated by the use of asymptotic values for

S in Table 10.

3.-1.
X
x
measured - X
2.1 *
calculated—_“v‘~_-‘__’ff”””’
1.
0 + + — + + f + + + ~+ +

2 4 6 8 10 17 14 16 18 20 22 24

Strip storage (S) - pages

Figure 9. Comparison of measured, calculated cost of virtual
memory numerical solution.

(46)

= Wy

G. Evaluation

This chapter has been primarily concerned with modeling
and analysis of components of the equation solver. The de-
tailed timing analysis performed on critical parts such as
arithmetic kernels and I/0 routines cannot reasonably be
pertformed on every code sequence. Therefore, although
the asymptotic performance for large problems may be reliably
predicted from these key components, the small problem
performance cannot; indeed, one does not know for certain
what qualifies as a small problem without analysis of all the

code segments. Fortunately, since the complete equation

solvers have been implemented (Chapter 3), it is possible
to make evaluations by comparing run time performance.

One high-level performance measure frequently used for
evaluation of processors with complicated parallel/pipeline
architectures executing simple software kernels is the millions
of floating point operations per second (MFLOPS). Plotted
versus problem size, the rate at which the MFLOPS approach

asymptotic values imposed by the speed of processor arithmetic

units gives a succinct display of overall small problem
performance meaningful to user and algorithm developer
alike. We propose to use the same MFLOPS performance as a
comparative measure of complicated scientific packages
executing on a relatively simple (scalar) architecture.
Figure 10 shows the MFLOPS dependence of four sparse
equation solvers applied to the family of finite element

problems of Appendix A. The asymptotic values shown are

(47)

- g ~ g oW WS

obtained from the execution mode timings of the innerloop
obtained in Table 4. The MFLOPS are obtained from the
timings of Table A3 and a knowledge of computational com-
plexity. Several comparisons of the plots seem meaningful.

1. Over the range of n shown, the scalar version shows
a relatively superior performance over the vector version for
intermediate values (n=3,4) where the overhead of the inner
loop is significant. For n=2, other program overhead tends to
produce equally poor performance for both versions; for n=5,
the larger inner loop startup time of the vector version becomes
less significant and the gap between the two decreases.

2. The large program overhead of the partitioned version
makes this very unattractive for n=2,3, but when n=5 the rate
of increase in MFLOPS is large and suggests that this version
should be operating at 50% or more of the asymptotic MFLOPS
value for problems beyond the range of a 1-2 megabyte local
store.

3. The code generation version shows a remarkably fast
climb to the asymptotic value (the vector inner product

execution timing of Table 4 is used). Unfortunately, the

code length did not permit larger values of n to be investigated.

It is planned to extend these revealing characteristics
to larger values of n for the partitioned version, and to
test this version on commercial vector processors. Perhaps
more important, this appears to be a useful measure of the
efficiency of general sparsity algorithms versus more special-
ized full-, band-, and block-solvers operating from a backing
store. If the general algorithm can be shown to be as easy
to use (sce formulational aids, Chapter 3) and near the
MFLOPS rate of special algorithms, the usefulness of the

partitioned general solver will be well established. (48)

s S 0.

~1.25 asymptote

1.2 1 /code
1.1 d /
- .87 asymptote
S Qe
g / _—= scalar
= vector
w .6 4
=
: 4 4 partitioned
vector
o2l
-+
1
n ((2“—2) elements/side)
Figure 10. Floating point operation rate

S . e L b

,..

G N

k- SRR

(49)

L
F
F
i

- - Ry e “j

laease. ot o b4

i N

o

(hapter 3. DESCRIPTION OF A DUAL VECTORIZED GENERAL SPARSE EOUATION
SOLVING PACKAGE

A. Introduction

The results of the appendix referenced throughout Chapter 2
were produced by two general sparse equation solvers. Together
with the (processor-dependent) code generation program of [6] [8],
these Fortran language solvers allow the user to solve sparse sytems
of equations ranging from tens to tens of thousands of eqations.
For small systems, Table A3 shows that code generation is several
times faster than other algorithms; when memory size to contain
the code becomes a limitation - perhaps for several hundred
equations - the matrix often has sufficient local density to
warrant a vectorized solution. As the system size increases to
several thousand equations the LU storage becomes excessive and
a program with backing store becomes necessary. Since the
majority of sparse matrices solved on current fast scalar and
vector processors are beyond the size manageable with code, the
latter two approaches appear the most useful.

The dual software package described in this chapter allows
the user to begin with an equation solver contained in local
store and then, as problem size grows, to include a backing store
with little change to the application program. There is, of
course, some reprogramming of the I/0 section of the second solver
necessary for different file systems.

In developing the dual sparse solver package, several general
guidelines were used.

1) The package should be able to solve efficiently sparse

equations ranging in density from several elements per column
(50)

e

W e

T

o Nl

Iz}

N

“d

(electrical power systems) to several hundred elements per column
(finite element problems). Since the structures of such matrices
are described by quite different data structures, this assumption
resulted in a distinction being made between the user-supplied
matrix description, and the data structure utilized by the
symbolic and numeric solvers. Thus, any of a variety of structural
descriptions can be entered by the user (see flow chart of Figure 15);
these are converted to a common vectorized data structure prior to
symbolic and numeric processing. It is recognized that an additional
storage will be required to describe the structure of block matrices,
vis-a-vis a "hypermatrix" [14][15]][16] representation. However,
as shown in Table Al, even for relatively small sparse matrices,
the symbolic storage is far less than the numeric storage -
especially for machines with 16-bit integer format - so that the
additional I/0 incurred in recalling previous column strips con-
taining both numeric and symbolic imformation is not significant.

2) The processor should have at least 1-2 megabytes of
local (real or virtual) store. Thus, it is assumed that the
symbolic matrix structure fits in local storec and that a full
column (row) of the numeric storage occupies a smal' fraction of
local store. This assumption rules out a typical minicomputer

system.

3) The package should run efficiently on both scalar and
current vector processors, although it is recognized that per- f
formance could be improved in some combinations of matrix structures 1
and vector architectures by major revision of the symbolic and
numeric algorithms (e.g., blocked matrices being solved on a pro-

cessor with a high-level vector capability, or very sparse matrices

(51)

—— S “i

ol

being solved by multi-row factorization [13]). Certain common

vector instructions are accomodated (e.g., the inner-product
instruction) by supplying alternative forward and bacx substitution
algorithms.

In this chapter, issues related to the use of the package
are examined, including

(1) a simple example of its use, without backing store and
with user vectorization of the structural input data;

(2) discussion and examples of aids to simplify the equation
formulation and avoid the need for vectorization noted in (1);

(3) general flow chart of the program;

(4) representative example involving finite elements and
using backing store and formulation aids;

(5) detailed discussion of algorithms and formats used

in the sparse solvers.

(52)

L BN

T

A

B. General Program Description and Use

1. Program description

The software package is divided into three operationally
distinct parts.

(1) VEGES (VEctorized General Equation Solver), operating
without a backing store;

(2) VEGES/P, which partitions the matrix solution to utilize
backing store, and

(3) UNBLOK, a symbolic preprocessor that accepts a variety
of user descriptions of the matrix structure and produces vector-
ized arrays to VEGES or VEGES/P to aid the numerical equation
formulation procedure.
The specifications for VEGES and VEGES/P are given in Table 11.
It is worth noting VEGES/P requires considerably more program
storage than VEGES, so that the latter should be used when part-
itioning is not required.

2. Example use of VEGES

For the reader unfamiliar with the use of sparse equation
solvers, an elementary example will depict a minimal programming
effort necessary to utilize this software. To distinguish the
symbolic and numeric solution phases, separate main programs
are used for each phase; communication between phases is provided
through a backing store. Since the symbolic phase need be ex-
ecuted only once for a given matrix structure, this separation
insures that program and array storage associated with only the

symbolic phase will not burden the time-consuming numeric phase.

(53)

ad N

Name: VEctorized General Equation Solver (VEGES without

partitioning, and VEGES/P with partitioning).

Purpose: To perform direct solution of arbitrarily-

structured sparse simultaneous linear equations,
either with or without a backing store (partition-
ing).

Language: IBM extended Fortran (see IBM document GC28-6515-

10); principal extensions from ANS Fortran are
IMPLICIT, REAL*8, and INTEGER*2 declarations.
Operating system: Development and testing performed on
Michigan Terminal System.
Availability: Source language programs available from
Professor Calahan on 9-track, 800/1600/
6250 BPI (1600 default), IBM standard labeled
(default) or unlabeled magnetic tape.

Program limitations: up to 32768 equations; this limit can
be changed by altering INTEGER#*2
array types to INTEGER*4.

Program storage (bytes) VEGES: Symbolic - 5718

Numeric - 3976
VEGES/P: Symbolic - 18250
Numeric - 15300

I/0 management routines - 12456

Table 11. Program specifications.

(54)

————— - ——

R

id

L3

The example solved by the program of Table 12 is

3y 2 2L xl 8
0 5 2 X, = 16
(32)
2 0 5 x3 17
L - e = . el

where [x1 X, x3] = [1 2 3] is to be found using (1,3),(2,2),
(3,1) as pivot positions. Beginning with the column-ordered
vectorized matrix structure (recall Table 2)

IX: ~0,-3,1,2,%,5%

JA: 1,3,5,7
and the pivot positions

TREs 3,21 PR W25 S
first the order of IPR is inverted (IPRI(IPR(J))= J and the
symbolic processor VMSP produces a set of seven arrays passed
to the numeric phase. In the numeric solution, thecse are
combined with the column-ordered matrix and right-hand side

S e R R A e o

B: 8.,16.,17.
in VMNP and VMBPC to produce the solution. The flow chart is
shown in Figure 11.

It should be noted that, although the example depicts

column-ordered structure, row ordering can be accomodated by

using subroutine VMBPR for the substitution steps. The symbolic

and numeric data would have the row-ordered form
AT 1.3,2,3,~1.~5,
JKr 1,3,5,7,

IPR: 3,241, ER G g 53

~we

s

M e il

Coesd SYMEBOLIC FHASE
Cherd DIMENSLTONSS TUACNE L) » JUCNF L) » JLONFL) » IVUCNFL) » TVL (NF1) o IF(N)

' TXEOND o DXBCCNDY s T r) o TERTCND » TRCCND) » ICNT (N2 2) s JACNFL)
. DIMENGION 0 1A N O FOSTIIONS IN MATRIX
t DIMENSTON OF JUsJL = NO. OF FOSITIONS IN Uel

INTLGER®A JACA) /19305, 7 /9 TVACA) » JUCA) » JL(A) » TVUC(4) o IVLC(4)
INTEOGER®D IAGAY/ <1 T01920 39375 TUCD) 2 ILCP) v ICNT(3:7) 0
RLFCA) p IXTCR) 2 IXEBCA) » INC(3) /39201 /9IFR(3)/19293/»IFRI(3)
HOSRN=1
N=3
HAXS=9
HAXN=9
Caaes [NVERT ROW FIVOT VECTOR
Pt PIVIDCIPRyTERIPN)
Uasih CAll SYMEOLLC PRUGRAM TO GENFRATE MAP
CALL UMSTONe A TA TVAs JU» JL» TU TL» IVUS IVL s IXT» IXEr IF
ALONT o0 XS e MAXS s MAXN MAXNY Ny IFCy IPRI)
NE'Y=N#L
Ceaxy LIVISION RBY 2 FOR x2 ARRAYS
LCJUCNFPL) $1) /2
TA=CIL(NFL) $1) /2
TOSC NN $1) /72

o

I
Cxwes U170 ARRAY DIMENSIUNS FOR NUMERICAL SOLUTION
WULIECSy 2) TUU NI 1) o IVLGNF 1) o JUCNF 1) » JLINF1) » JACNFL)

3 FORMATES U= 2384 " =7 o 1547 T~ 535/ TL—“w15/7 MATRIX=%s1%)
Ceses AV SYMEOLTC RESULTS ON DISC (FOR ILLUSTRATION FURFOSES)
CHews HETTE AREAY L ENGTHS

WELITE CNDSKNe $) L3y 14005
3 FORMAT(31S)
Uil WRTCJAPNFLsNOSRN)
CALL WETCIA» 1S9 NDSRN)
CALL WRTCIVAPNIEL) NISRN)
Call WRTCJUSNF 1o NOSRN)
Coll WRTCUL o NP Lo NDIISRND
L WRTCIUs T3P NDSRN)
Cab L WKTCIL, LA, NDSEN)
Al URTCIVUs Ny NISRN)
CALL WETOIVL o NeNLSRN)
Col WRTOIFC e NsNDSRN)
CALL WRTCIFRI+NsNDOSRN)
STOF
ENTE
SULROUTINE WRTCI,NTOT,NOSRN)
Coawx [LinN IS LENGTH OF WRTTE LN 4-EYTE WORDS Table 12. Fortran program to

INTEGER®2 TLEN .
LOLTCALKL I(1) solve Equation 32
HEOE Ll ke using VEGES.
ILASE=
1 NI)12 =MINO(NTOT1,32000)
TLI N-NI1OT2
(oned STUUENTIAL WRITC. .o €O EBYTES FER RECCRD
CEl L SRITECIOHBAST) » TLEN» 09 TDUMMyNISRN)
HEGTHTOTT -32000
UGS =NIASE 132000
L CtOI2.E0.32000) GO TO 1
KL TURN
ENg
Fisk JMTRIC FHNASE
ska ¥ D TOH Uel o lULIL T4 FER FREMROCESSOR PRINTOUT
RS R A 02 D0 2010050110 2 DOr 2 DOe S JIO/ s UC4) oL (4) g
Ce I B0 14,1101 2.00/ 1 X(3)
INTEGIR®A JACA) » TUACA) » JUCA) » JLCA) s IVUC4) » TVUL(4)
INTILOER®Y TACZ7)»IUCA) »IL(A)»IFC(3)+IPRI(3)
NOSRH=1
N=3
NF1=N+1
Cexxx READ DATA FROM FREFROCESSOR
READ(NDSRN,1)13+14415
1 FORMAT(315)
CALL RINCCIANF1eNDSRN)
CALL ROECIAY IS»NDSRN)
CaLL RUCCIVASNPL»NOSRN)
CRLL ROECIU»NFLeNDSRN)
ROECJ o NF1yNDSRN)
FLCCIUs I3-NUSRN)
. ahE i e T et ".N)
CALL RUE CIVUNsNUSRN)
CALL RDECIVE o NoNDIISRN)
t CALL ROE¢TFCsNyNDSRN)
. CALL ROECIFRT+NyNOSKN)
CALL VHMNE(NsJAsTA» IVAs Ay JUs JLs TU» I oDIsUrLe X, IVU» TULY
2IFCYIFRI)
CALL VUHMEFC(Ne JUy JL e IUS IL o TVUSIVLy DT vUsL s Be X IFCo IFRT)
WEITECOs DI (B(J) v d=1+)
FORMAT(IELS.7)
STOP
¥ END
SUNROUTINE RIECI,TLENsNOSRN)
Cetex [LCN IS5 LENGTH OF RCAD IN 4-BYTE WORDS
INIFOER®D IXEN
LOGTCAL®L T(1)
NAL=TLEN®Y
- NIASE=1
U2 -MINO(NB1+32000)
I[XLHI=NB2
Casax ST NTTAL READ

|

=]

AL TUANCTOHRASE) o IXEN O v ITUMMe NISRN)
Ml o NG1 -32000

. rliiv | NBAGE ¢+ 32000

¢ A HG2.EQ. 32000) GO TO 1 (56)
FYETInp

b

3

- - e R S

T YT

IA,JA (vectorized)

IPRI, IPC

v

VMSP

i}

IVA
1U,JU,IVU

IL, 3L, IVL
|

A === NP ‘
|

T
VMBPC,
= =1 vMser
B
Figure 11.

solver.

A matrix structure
Pivot order

Symbolic phase

L and U vectoyized
Structure, written
to backing store

Numeric factorization

Factored matrix, diagonal

Forward and back
substitution

Solution vector

Flow chart of non partitioned vectorized sparse matrix

ok

AN

e

o 8

*

C. Simplified Equation Formulation

1. Introduction

From a formal viewpoint, a general sparse equation solver
can reasonably require that the matrix be stored in standard
order (e.g., row or column) in local or backing stere before
the soviution is initiated. The burden of formulating the
equations in this order is left with the user, so this rationale
goes, because the variety of equation-formulation procedures
is simply too large to accomodate in a general way. Unfortunately.
this standard-ordering requirement, together with the unavoidable
necessity of describing the sparsity structure, has made the
conversion from full- and band-oriented methods to general-
sparsity methods worthwhile only for large problem-oriented
analysis/design packages where the user is isolated from
the demands of the sparse equation solver.

Several aids to the equmation formulation have been produced
to avoid this column-ordering requirement on the user. Their
use is illustrated in the following examples. In this development,
a distinction will be made between a scalar structure, where
individual elements of the matrix are described by their (row,
column) position, and a vector structure, where submatrices
(blocks) are indicated by several descriptors.

2. Scalar case: example

To exemplify a typical conversion from a full- (or band-)
matrix solution to a general sparsity solution using the formu-
lation aids, consider the elementary example of Figure 12
(the reader is assumed to be familiar with the example of Table
2). The key steps in this process are the following.

(58)

numeric factorization portion of VEGES.

Y
L o
!
ey
oy
& Y
p 4
3 . ¥
7.
j .
*Burssodoad DITOQUWAS puUB UOT3IB[NUWIOY L
XTa3ew osdeds ‘XTajew [[ny j0 uostiedwo) T 24n3ry .
o
€
(oSl Pt _ wexSoad xri3euw i
(eiep [edr23mnu JO 335 maU _ weiSoxd xtijew 3sieds | 1103 TeUTBTIG)
yoea 103 Ppaindaxa3) weiBoad aseyd JT[OqUAS _ 181 w A
xt13ew asieds aseyd driauny | _ , =
_ |]
| _ o
. | =
i palopio-uunfod st v ‘B3IEP _ w
i [ein1onils se 13plo dues _ | S
| utr suorienba ale[nuIOg 1 | : s
., € g eaep reanidonias (‘1) | - .mu
/ , o
R _ x palapio-Ajuwopuel , wn } %)
cz- = ((£)davw)V “ < o _ e
o= ((2)dvWY _ —n z ‘parddns-1asn | b 2
-
¢ = ((1)dvwW)V N (1- = ()WN | _ -
| c- = (W | b =
_ 1- = (OVN | 9+ gDy = (£°0Y b =
_ 1- = (S)VN _ tz- = (1Y f .
L YOTaN 1- = (MW o= (EIN m =
| dSHA uo13NIoS _‘N- sl Aeare Surddewl, - = (D)¥N | ¢ = (IR :
JdHNA < r ” Srzaunu 103 sAelle €31M10013S PILIaIPIO o ; =
o eRy oy T10qUAS 21BAdid - 1 uuniod a1edaid z- = (R)¥N | : o
suotienby | N1 ‘VAl ' ﬁ,. ol s
3A10S | sAeauy. vi vl N m
.-
0 0 0 0 tC 0 B e 20 0 0 .ﬁ
0 g o) + {0t [} + 0 0 0] + |0 5 0 ..m
9 ' :_ r._, (z ' 0 0 0 0 f B
J -
. S R T

laenn bl b et i e . RESSSSEE D Y e T] ’ S ——

1) The user must supply explicit structural data, but
b the structure may be in any order and in a variety of forms;

the scalar (i,j) form is illustrated in Figure 12. This

e

structure is most easily produced by creating a new version
of the full matrix formulation, but replacing each numerical
formulation step with a symbolic formulation step (a four-
step formulation is shown); this symbolic data (array NA) is
preprocessed in the symbolic phase of Figure 12.

2) Tecause the sparse solver requires column (row)
ordering of numerical data, but the equations in general may
be formulated in any order, a mapping array MAP is generated
by subroutine UNBLOK, with an element for each numeric
formulation step, so that at the ith formulation step,
A(MAP(1)) is calculated by the user. Alternatively, if the
numeric values are stored in an array B (viz, B(l) = 3.,
B(2) = 7., etc), the A matrix array is formed by

DO 1 J=1,4
1 A(MAP(J))=A(MAP(J))+B(J) (31a)
Note that the mapping array increases the storage between

25% and 100%, depending on the word sizes of symbolic and

B a2

numeric data.

3) Duplicate positions are often created in the determina-

7T

tion of array NA, as when several numeric values must be added
to produce a single matrix position. This duplication results
from the creation of a matrix position associated with several

physical components. As illustrated in Figure 12, this sit-

Ao

uation is readily handled with the MAP array, where MAP(2) =

a MAP(4) = 3.
: (60)

St B O

e M
AN

T R — _—— —-——-——u————-‘

3. Scalar case: algorithm

In addition to the storage introduced by the MAP array,
another critical question is the computational complexity
of the MAP generation. This proceeds immediately from a
study of the algorithm.

Let a user-suppliéd n x n matrix structural and numerical
description be described by

(row,column) position = (ik,jk) k=1,2,...m

b

[}
o4

k 170
To arrange in column order, define

8 = i+ (n+1) (5 -1)
where duplicate values of Rk are allowed. 1If the values of
Rk are sorted in ascending order and a permutation vector Py

maintained so that

then the sequence

B Al g B
Py By Py

is a column-ordered list of numerical values, with possible

duplication of positions being adjacent in this list.

Now assume that QD = 2 implies that b and b
iy T4 Pr r+l

are to be added to compose a sparse matrix position. Define
the set

fqt =f{r:1lsrsm 8 A2} 32
q r rem by Fb, (32)

Here, Qs k=1,2,...s, points to a set of unduplicated values

of QP . The column-ordered matrix positions arc then given,
.

without duplication, by

S¢ = o Zuely] e 1
Pa
k
i, =92 - (n+1)(§k-1) k=1,2,...s
k qu

The mapping array MAP is generated by defining

(331

Then the packed sparse array A is calculated columnwise from

Thus the set Wy performs the function of the MAP array.

The complexity“of the above computations is

Ly O(mlogzm) for performing the sort, and

(2) 0(m) for performing the scans of (32) and (33).
The sort easily dominates the computation. Since m=0(n),
for finite element grids, this complexity is 0(nlogn).

4. Vector case: introduction

Large sparse equations are usually most easily formulated
in blocks, each relating clusters of equations and variables.
These blocked submatrices must then be arranged in column
order within the block, and then these columnwise representations
inserted into the overall column-ordered matrix structure.
This unblocking process - the primary function of subroutine

UNBLOK - is complicated by the following factors.

(62)

limes

Files of Backing Store

1) Blocks may be generated in any order.

2) Blocks may in general overlap in cither or both
dimensions (however, see [20] for methods of eliminating
overlap at a cost 1n matrix size).

2 3) Blocks may have an internal sparsity structure worth
preserving, e.g.,diagonal, tridiagonal, etc.

4) For very large matrices, the blocks may not be con-
tainable in local store, but must occasionally be written to
backing store.

To reduce user concern for these issues, the preprocessing
subroutine UNBLOK accepts a high level description of the
block structure, and, similar to the scalar case of Figure 12,
produces both (a) a vectorized matrix symbolic description for
VMSP, and (b) a vectorized mapping array to assist equation
formulation.

Since the primary use of the blocking feature is expected
to be in the solution of finite element problems, a simplified
format has been provided in this case. Entering only the
node numbers of the element te¢sults in the necessary vectorized
matrix description and formulation map, assuming all nodes in

the finite element are coupled in the element matrix description.

o Lo AU

Boundary conditions are also handled at this level.

A summary of scalar and vector formats acceptable to

RS R b o B

UNBLOK is given in Table 13.

Unpartitioned form

i Temporarily ignoring the problem of incorporating a backing

' . store when the matrix cannot reside in local store, two examples

v Tad

will be studied to illustrate the correspondence between

symbolic and numeric arrays and their use.
(63)

N

i

"

oh

N

‘v

The first example of Figure 13 illustrates the processing

of a variety of overlapping block structures.

The user

supplies a symbolic array NA to the symbolic preprocessor

UNBLOK and a numeric array to the equation solver.

The

latter array must be column ordered by the user within each

block, regardless of the block structure.

element must be formed in column order,

The formulation

savings

Structural Description

Scalar in (i,j) position

Dense vector in column j

from row i1 through row iz

Finite element connecting

nodes k,,k

IELVIEEE

km
1

and boundary conditions

11'12,...2m2

Dense (q=1)
Diagonal (q=2)
Tridiagonal (q=3)

Table 13.

block between
positions (i;,j;,)
and (i,,j,)

Thus, a finite

usually a minor restriction.

Format

-)
=1

&)

Format of NA array input to UNBLOK,

assuming column-ordering (using VMBPC,

IMBPC) .

in storage.

(64)

process may be vectorized with a potential

Rather than generating a single

array MAP, one can produce both (a) MAP(T1) which points to
the beginning of a column-ordered vector in the packed matrix
array A, and (b) LEN(T) which gives the length of this vector.
The A array is then loaded from the B array in this manner.

N=0

DO 1 J=1,KT

IV1=MAP (J)

IV2=LEN(J)+IV1-1

DO 1 I=IV1,IV2

1 N=N+1

1 A(I)=A(I)+B(N) (34)

As in the scalar case, (Eq. (3la)), the array B need not be
formed in its entirety before transfer to A. For example,
B need store only the numerical components of a single block
or finite element; so long as the J and N counters of (34) are
maintained, the innerloop can be entered at any time.

The choice of using scalar or vector representation of

(31a) or (34) depends on the average vector length (que) of

the comporents of the B array. Since this Lave will be less
than the Lave for the completed matrix which in .rn will be
less than the bve of triangular factors L and U due to fill,

the scalar mapping procedure of (31a) is expected to be pre-

w T W

ferred in the majority of cases.

The second example of Figure 14 illustrates (a) the sim-

il ot e o

plicity of using the high level finite element feature, and
(b) a simplified method of incorporating boundary conditions.
In this example, all elements are assumed triangular with two

unknowns/node. The related matrix structure is shown by x's,

Ad N

Y

(65)

»

oh

PN

TV e

U N T S S L L %, 5. B. 55
| L |
. I
s ARG T OO FERE B % . ~To B 0
+ : .l + o e l.__- -
0. 0. 8. 0. e T & g 3. D 3. B
| i |]
f7. -2 0. B 0@ el sl i At B 6
NA(NB) B(NV) MAP (KT) LEN(KT) JA(NP1) TA(JA (NP1
Finite ! % } : : b
CIAMIDE 4 7. 5 2 5 1
Colunn % 2. § . ; 3
vector 1 b, 1: : 1
4 - 2. 3L 1 3
0 1. PN v . 1
[ridiagonal 3 Z' ~ 1 2 -
blOCk 1 LD, // S 3
1 5 /10 . _ 2
3 - 1 2
% 4. S 2
0 | BT 2.
1 | P 3 1
Full 1 6. 8 = 1
block 1 P 12 ___ .S
2 ds 11 1
3 A 1
: ey
: 2 4. Vectorized pointers Matrix
Diagonal 3 1 / for B into A. description to
block 1 2 (see Eq.34) VMSP, ZMSP
4 5.
2 =L
£a
Scalar{_g g'
0 5.
fl 4.//
Row { 3 5,
vector } 3 3 f
{ & 8.
-4 |

|
user :user column-
. input ‘ordered numer-,

“to UNBLOK ical array

output from UNBLOK

Figure 13. ©Example of column-ordered matrix preprocessing of structural

data.

(66)

)-1)

R s TR . S

N

“yd

o A

*

e

Figure 14.

separator for three partitions

Triangular finite element structure

X X
XX Nh: 1 2.3 & 3. &' 2 3 % % 4 s
X X
X X
» (b) Matrix and NA array without boundary

XX X conditions

X X X X

X % X

XX X X

X X X X

X X XX

MA: 1 2 . - see above . . .4 5 2 7 9§
X X XX XX p
1
X ¥ XX X X
X X X X X X
(c) Partitioned matrix and NA
XX XX XX XX P> array with boundary
XX XX XX XX 5 conditions on variables
------ 2 O

Example of row-ordered partitioned finite eclement
problem and matrix.

(67)

SRt

e}

A o

.

and the NA array is also given. [If the boundary conditions
are of the Dirichlet tvpne on variables 2,7, and 9, these num-
bers can simply be appended to the NA arrav as shown. If row-
ordering is used (VMBPR), subroutine UNBLOK will then generate
appropriate vector descriptors to numerically zero clements in
the rows associated with the boundary condition variables.

A unit-valued diagonal will then force the variable to the
right hand side value. An example will be given shortly.

Partitioned form

When the A array cannot be kept in lecal store, it must
be formed in partitions. 1If the matrix is row-ordered as
required for incorporation of boundary conditions, the
partitions must also be along row boundaries, as illustrated
by the three partitions (P1-P2-P3) of Figure 14.

Each partition is formed in a buffer region of local store;
when a partition is completely formed, it is written out to
backing store, and the buffer region is overwritten by the
next partition. Continuing with the example, assume that
each finite element is formulated before beginning the next.
Then the coupling of elements sharing nodes within the element
array requires that at least one partition be resident in
local store, representing the coupling of past and future
partiticns. Thus, Pl representing node 1 of Figure 14 can-
not be written to backing store until finite elements a and b
have been formed. Then the separator 2-3-4 isolates succeeding
elements from node 1, so that Pl can be written to free space
for Pa,

A subtlety in this buffering scheme is introduced by

distinguishing the extent of concurrency by the processor in

(68)

the formulation and 1/0 processing. If the central processor

performs the 1/0 as well as the numerical equation formulation,

then only two buffer regions need be defined. For example,

2 in the S5-partition problem of Figure 19, to be discussed in

detail later, the formulation-I1/0 sequence with two buffers

would proceed as follows.
Set up elements a; - ag in buffers 1 and 2 3
Write buffer 1 (cols. 1-10) '
Set up elements b1 - b8 in buffers 2 and 1
Write buffer 2 (cols. 11-20)
Set up elements ¢, - ¢4 in buffers 1 and 2 |
Write buffer 1 (cols. 21-30) :

Set up elements d1 - d8 in buffers 2 and 1
Write buffers 2 and 1 (col. 31-46)

On the other hand, if tie 1,0 is handled by a secparate pro-
cessor and a buffer region cannot be simultaneously filled
and drained, three buffers must be used. The example would 3

now proceed as follows.

Set up elements 8, - ag in buffers 1 and 2

Set up elements b1 = b8 in buffers 2 and 3; write buffer 1
Set up elements ¢ - Cg in buffers 3 and 1; write buffer 2
Set up elements d1 - d8 in buffers 1 and 2; write buffer 3
Write buffers 1 and 2.

5. Vector Case: algorithm

The subroutine UNBLOK operates on user-supplied block
descriptions as follows. Since the blocks produced in the
vector case have an internal sparsity structure, the first

step in column-ordering the entire matrix is to column-order

id N

g each block. This is carried out "on the fly", i.e., as

(69)

y— L A IR P LBl o e camsamnt b S

each block is recognized in the user description, an cexnanded

vector description - beginning and ending row numbers of each |
dense column segment - is generated in column order for the
- block. In the case of a finite element, the entire submatrix

is column-ordered, irrespective of the block structure.

The arrangement of these vectors into a column-order for

RSV SR

the entire matrix has two steps.

(1) An array of beginning row numbers for each vector
is saved from the above process. Together with the correspond-
ing column number, these '"scalar'" descriptions of cach vector
starting position are sorted as described in the scalar case.

(2) The column-ordered 1list of starting vector positions
is scanned a column at a time. For each co mn, starting and
ending row positions of vectors are noted, and overlapping
vectors are combined to form the final compacted vectorized
matrix structure.

The sorting is again the dominant computational effort.
If there are m, blocks with an average of m, columns/block,

1 2

Sy
- then the complexity is ﬂ(mlmzlogz(mlmz)).

D. Program Flow Charts

S

Having illustrated the use of the unpartitioned solver
E VEGES and the symbolic preprocessor UNBLOK, we may now view
the flow chart of the complete svstem package with some under-
standing before considering in detail the more complicated

partitioned version in VEGES/P. Particularly noteworthy in

id n

Figure 15 is the IBM 360/370 assembly language version of the

T

(70)

5
H

Ad N

b A

yectorized row- OT

J--nllI!!llll!IllIllllllllllllllllnl!-....'.'!!!!!!!!!!!!!!!!!|

Randomly-ordered
block description of
matrix structure

b

column-ordered descrip-

ti . £, M‘l:‘_«_“
~
P

tructure
|

. |

Unblocker and 1
vectorizer UNBLOC

\ ————
N a
i ; WappIng BFTaVE

~ / appin
4 MAP ,LEN

s U

Vectorized structure

-
)

Symbolic preprocessor and

Symbolic preprocessor
VMSP partitioner ZMSP |
Matrix
numerical *ggs
£ values ’ h
| |
I o, e 8 B b, &8
|V A Ji“ B! Y
Assembly language Numeric Numeric
factorization ! factorization factorization
VMNPFJ VMNP ZMNP
5 RHS
1 k numerical =
values
% g
e B, o [e e
v i R :
J Rew-ordered i

Cciumn-ordered

Row-ordecrcd
forward and back

} Column-crdcred

forward and backl forward and back

substitution
ZMBPR

r
forward and L substitution substitution |
substitution VMBPR IMBPC
VMBPC ‘ i
§ A ' 2 e i 5
ML . A i \ B
Solution Solution | Solution Solution
yector vector vector vector
\
Non-partitioned <— | —>partitioned
(VEGES/P)

(VECES)

User-supplied data flow

Program-produced data flow

t showing options in dual sparsity pa

Figure 15. Flow-char
see Table 16 for complete list of

unless otherwise noted;
block.

(71)

ckage;

All1 blocks coded in Fortran
subroutines associated with each

S——
. - j

L&

2). The key steps in this process are the following.
? (58)

g

numeric factorization portion of VEGES.

E. Details of the Partitioned Solution

1. Introduction

The implementation of a backing store version of a general

o

equation solver necessitates a fundamental assumption concern-
ing the size of local store versus the size of the system of
equations. In contrast to specialized full-, band-, and
block-solvers where the structurec is given, sparse solvers :
must have ready access to both numerical and structural data;
this implies that a decision must be made on whether to main-
tain either or both completely in local store or whether only
a local description - adequate for a local computational
sequence - should be maintained, the rest residing on backing
store. A similar consideration is involved in the equation
formulation stage, i.e., whether the matrix (and the MAP array
if UNBLOK is used) is formulated and written to backing store
in parts. In general, a tradeoff must be made between flex-

ibility in use when all potentially large arrays are partition-

able, and user convenience when all arrays are resident
111 local store.

In VEGES/P, it is assumed that arrays associated with the
symbolic solution phase are in local store but all other large
arrays are in backing store. Table 14 details this assumption
by giving the residency status of A, L, U, etc. in the form-

ulation and solution stages. The justification for this choice

is that the vectorized structural arrays arc likely to rcquire

(72)

o » S

- - —— T - ——— —

(59

R T

Y

.

at least an order of magnitude less storage than numeric arrays

residency
}- array | residency| array | numerical | Structural
A A B Ik :
structural li B B - 3
numerical B LU B B* !
MAP, LEN B X L =
*L during symbolic phase
(a) Formulation (b) Solution
Table 14. location of arrays in UNBLOK and VEGES/P; [- local store

B - backing store.

for problems necessitating a backing store (the ratio being
4n for L and U in the finite element problem class of Appendix

table Al).

2. Flow chart of UNBLOK symbolic preprocessor
The UNBLOK subroutine originally cited in Figure 12, has
the ability to partition the MAP and LEN arrays, as indicated

in Table 14, writing these to a backing store one partition at

a time. Thus, these formulational arrays do not seriously affect

the storage requirements for the symbolic phase of the solution.
Other noteworthy features of UNBLOK are the ability (a) to
produce either scalar or vector mapping arrays (see Eqs. (31la)
and (34)), and (b) to identify rows which are to be zeroed in
the manner of Figure 1l4c, to handle boundary conditions.
3. Flow chart of ABLOK numerical preprocessor
The numeric formulation phase is complicated somewhat
by partitioning of the formulation step, since the MAP and
LEN arrays are on backing store (from UNBLOK above); then
retrieval must be coordinated with the formulation of components

of A.

(73)

£

T v ke

S

Enter

NA contains finite clement block, etc
IXP points to partitions

Tail of NA gives NRC houndarv conditiot
variabl rs.

iable numbe

this partition in NA
t 1XP(I) to point to partitions

in 1P
I

Dissociate elements blocks, etc. into
weighted row vectors (top column index
and row) in IP and row vector lengths
in LF

—

Set JP to identity vector
Sort IP permuting JP

IP is now in ascending order,
1P is permutation

l

Conve IP 10 row vector top column
inde. , JPL to row pointer into IP.

Loop thru each row
J=1BREAK (1), IBREAK(1+1)

Set JA(J)IVA(J)

1

Step through 1P vectors to get
IA matrix description.

lter 1P to point into single
buffer, A numeric matrix

.
1
[
|
l
|
i
|
|
[
[
|

set NA to give row d pointer to
diagonal.

For rows with boundary umdmom.]

e

Update IADIM - maximum space for
A numeric buffer

Write IVEC,TADIM, NU! F, NBC on IMUNIT

Write IBREAK (A matrix row breaks)
on IMUNIT

Write IVA on IMUNIT

Write boundary condition part
of NA on IMUNIT.

i7
\‘"ctn‘r code

scalar code
i

permute 1P values into MAP,
adjusting them to point into
NUMBUF different A numeric
buffers

MAP and LEN elements now
corresponé, IXP is partition

1P

set MAP to
of

inverse permutation

pointer into MAP and LEN.

MAP is

Write ot MAP and LEN values
one partition at a time.

Toop thru partitions
NBR

now index into IP

]

TPL(

buffer

Change

in JP

at IP(M
to LEN(

Take IP(MAP(K)) elements one
at a time,q

comparing MAP(K) with
REAK(J+1)) to determine

offset) corresponds to

this element.

th

s e¢lement (starting
K1), length LEN(K)
K) scalar elements

g buffer offset.

addi

I

1
|
|
|
|
1
I
|
l which row break (and what A
|
|
|
|
|

Write one partition's JP
(scalar map) values on IMUNIT

O

Return)

Figure 16. Flow chart of UNBLOK subroutine
(74)

NTETF

= S— B ———— R —p ety
& < P " G it uidae " <
Enter '\
A
REWIND IMUNIT »
REWIND NBUNTT 3
Empty NAUNIT
Empty IBUNIT
Read IVEC, TADIM, NUM ’
from IMINIT (written K
Read (A matrix row hreak
from
IVA from IMONIT
NB (boundary condition
n) from IMUNIT
Zero all A positions
-
e
i I MAP values n IMUNIT |
no elements
1 this partition
|
‘ Il
scalar code partition I LEN valu
| Ay from IMUNIT
l MAP elemen
| Read finite element
from
I Put consecutive numeric values
| in A(MAP(IMX)],
| IMX=1MX+1
| 2O P clements
| partitian?
l Read nu
I e
|
| More numeric
| this element
I Put one vector of consecutive
; numeric values starting at
‘ A(MAP(1MX)) of length LEN(IMX),
then IMX=IMX+1
l).
ot D P |
1 ! , A
| A matrix buffer I is finished,
| Write out rows I[BREAK(I) through
| TBREAK(I+1)-1 one row at a time
on NAUNIT, saving file pointers
- | in array IVA.
| If this row represents a boundary
| condition zero this row in A and
I put a 1 on the diagonal first
b : ro this A matrix buf
Write NAUNIT file peinters (in IVA)
X on TBUNIT
» Transfer RHS vector from the tail of
NBUNIT to IBUNIT.
.

Figure 17. Flow chart for subroutine ABLOK

T

(75)

3.

b

AT TR Y

(62)

v

b AR

Times

Figure 18.

(Vectorized symbolic
matrix description, pivot order
l from user or from UINBLOK

t

Symbolic processor prepares LU map 3

N

User specifies either
a. initial columns of partitions
b. maximum partition storage
(bytes)
Partition-related information
printed; if interactive, re-
partitioning possible. G

e

Write partitioned symbolic A and LU

4§: D

User or ABLOX forms A numeric values
Vector of file pointers formed

int9 each column of the numeric
A file. B numeric values formed
and written. E

1

Read symbolic, numeric A; reorder A,
insert zero-valued fill positions in
numeric and write reordered,

expanded A. F

Perform numeric factorization on
reordered partitioned matrix

Perform forward and back
substitution of partitioned
row- or column-ordered matrix H

:

Solution vector

(76)

g Partitioned
—~ symbolic A
-~ h

N
~
) Partitioned
/ symbolic LU
SR o
S s

Files of Backing Store

Numeric A
file
pointers
Numeric B

Partitioned
initial
numeric LU

~ \ Partitioned
N Jsymbolic and

numeric U
S — |

Flow chart of partitioned solution.

Rl T

e a2

Ad A

:

This coordination can be generalized provided that the

components of A are also on a backing store in the order
consistant with MAP and LEN. This is performed by subroutine
ABLOK with flow chart given in Figure 17. Note that use of
this routine precludes formulation of the matrix "on-the-fly"
from its components, and requires an additional read/write
cycle in the equation formulation. This price for generality
is expected to be small for fast scalar processors but could
be significant for vector processors. At a minimum, ABLOK
provides an example of the coordination ﬁrocess for the user
with an alternate strategy.

4. Flow chart of symbolic, numeric solution

The symbolic and numeric formulational preprocessors leave
the matrix structure and values on a backing store, respectively.
The symbolic and numeric solution then proceeds in five major
steps.

(1) The columns which initiate the partitions are selected.
These column breaks are determined in an addition to the symbolic
processing phase by user specification of either (a) column
numbers, thus accepting whatever partition storage requirements
that result, or (b) maximum strip storage size, permitting the
column breaks to be selected by an internal algorithm. This
interactive partitioning step is depicted in the block diagram

of Figure 18 and will be illustrated shortly.

(2) The matrix A is read, reordered, and written to back-
ing store with zero-valued positions of I and U inserted.

(3) The L and U are formed in column-ordered strips, each
strip being written to backing store on completion and recalled

when necessary to form another column strip.

(77)

(4) The strips of first L and then U are recalled in sequence .
to carry out the forward and back substitution steps. These
steps (F-H) are shown in the flow chart of Figure 16, together
with the specific reads and writes to backing store of both
% numeric and symbolic information (the times given are referenced

in Appendix table A4).

5. Example of partitioned solution of finite element problem

The finite element grid of Figure 19 presents a sufficiently
complicated problem to illustrate the major features of VEGES/P
and the relative simplicity of solving this large class of

application problems.

Separator 6-8-10 11-13-15 16-18-20

initial column 1 11 21 31 41
(2 var./node) i ; | ;
! d | | |
| |

1 1 6 11 1
a3 e G dz
2 7 2 157
a; a, b1 b6 c1 c, d1 d7
34 b9 c4 d4
? 3 ag bc <o 7. 2
4 9 4 19
a, ag b2 b8 c, Cg d2 d8
ag b6 c6 d,
5 10 1 = 5

Figure 19. Finite element array and partitions for UNBLOK.

P T "l"".l

.

.

i

The symbolic data presented to UNBLOK consists of
principally the finite element node numbers, the boundary
variable numbers, and partitioning information for both the
variable numbers and the finite element node number list. The

precise data requirement is shown in Table 15. Note that these

N, the size of the matrix
IVEC - 0 for scalar formulation
- 1 for vector formulation

NUMBUF, the number of buffers

NPART, the number of partitions

NBC, the number of boundary conditions

NVAR, the number of variables/node

NNODE, the number of nodes/element
both in COMMON/FEL/

NA (NNODE*NVAR*(no. of clements)+NBC),
list of element node numbers and
boundary conditions

IPART (NPART+1), beginning column (row)
numbers of each partition

IXP(NPART+1), pointer into NA indicating
beginning of new partition

Table 15. List of input data to UNBLOK.

partitions pertain only to the equation formulation step. 1In
this example, this data is furnished by DATA statements.

As the flow chart for the example shows (Figure 20), the
symbolic phase can be executed through ZMSP (the preparation
of the LU map) with this minimal information. The partitioning
of the matrix solution itself is next carried out interactively.
The interaction is illustrated in Figure 21, where two partitions
are examined - one based on a maximum buffer size, and one on

specific column breaks (which happens to be identical to the

(79)

e}

v2Ad W

e

o,

column breaks specified in the formulation stage in this case).
The choice of a partition results in the writing of the L and
U maps as well as the presentation of certain critical dimen-
sioning information for the numeric solution phase.

The finite element is evaluated and written to backing

store in the same order as presented in array NA. These

are retrieved together with the MAP and LEN arrays in ABLOK,
which then writes the partitioned A matrix to a backing store.
The remainder of the solution follows in the manner of Figurc 18.

The main programs for the symbolic and numeric solution

phases are given in Appendix C. The reader will note that in

the numeric phase the user need supply only the subroutine

NFINI for evaluating the finite element matrix and the right

hand side vector.

(80)

o e

e

e A e

S SN

o

e

v e

Figure 20.

User definitions of

finite element problem
(see Table 15); pivot
order IPC,IPR or IPRI

Call UNBLOK to get 1A, JA
(symbolic A matrix description)
and map of finite elements,
blocks, vectors and scalars
into numeric A matrix buffers
corresponding to specified
parcitioning on logical 1/6
unit IMUNIT.

lillnl A buffer dimension l

Call ZMSP to perform s\‘m!mllc]
LU factorization, return LU
structure.

I

Call ZBREAK for interactive
partitioning of A and LU
symbolic information

|

Call ZMSPO to complete par-
titioning and write out nfor-
mation on units IAUNIT and

INUNIT.

(a) Symbolic Main Program - includes all dimensioning for calls
to UNBLOK, ZMSP, ZBREAK and IMSPO.

Call NFINI to write numeric
finite elements on unit NBUNIT,
replacing the numeric formulation
stage in this example.

Call ABLOK to formulate A
matrix from finite elements.
Symbolic mapping is from
IMUNIT, A numeric matrix is
written one row at a time on
NAUNIT. File pointers to each
row and the right hand side
are written on IBUNIT.

Call ZMNP to perform numeric LU
factorization, reading TAUNIT,
NAUNIT, TBUNIT and INUNIT and
writing L and U partitions on
TLUNIT and IUUNIT, respectively.

1
‘all IMBPR to perform forward
and back substitution using
TLUNIT, TUUNIT and IBUNIT and
returning the solution vector.

l

int solution \'cctnr‘

(p) Numeric Main Program includes all dimensioning for calls
to NFINI, ABLOK, ZIMNP and ZMBPR.

Flow charts of example finite element solution program

of Appendix C.
(81)

O T T T T S P P L P g ey Sy aqare

e o i S S v oo MO L

1
J
;
]
1
:

o e

PE g ™ s 5% "_\’r

#roun locd-toumtolidtvmlad O=-1m 13-1a 2=-1n 7=¥sink¥ t=2 ¥
$e AECUTIUN BEGINS

DIMENSION AC 248))
Value returncd from UNBLOK for A numeric buffer for ABLOK.

ZBREAN: ENITER MAX ARRAY STOKAGE (BYTES)

2444, Symbolic partitioning routine ZBREAK permits cxamination of
partitioning stratcgies and their effects on numeric buffer
storage and 1/0 requirements.

BLOCA LOW COLUNMN L STKRT MIN L SIZE MIN IXKUFF

i 1 1 448 1274 Partitioning cuan be specified by cither ot two metnods:
2 13 1 376 1192 (1) by entering a maximum array storage figure which
3 22 1 . 372 1192 determines column breaks by limiting the total
4 31 2 392 1184 buffer storage to the given number (this does not
5 41 q 96 776 include other required arvays of length N).
(2) by cntering specific column breaks.
g RUFFER SI/F% - ILONSY UNITS The choice 1s controlled by end-of-file entry by user
IRBUFF
1 IXBUFF L STRT* gives number of first L block needed in LU
g A 2 Tactorization of this block.
3 ZMBF 468
MIN I SIZE is the size in "ILENSY units" (IBM 360,370,
' 1/0 - KYTES AMDAITL d70v/6: halfwords) of L buffer containing
WRITE 12280 symbolic and numeric information. Since previous L
A READ 17578 blocks are nceded for factorization this number is
3 critical to the amount of I1/0 done in the numeric
ZBREAN: On 7 (COF=ND) routines.
N
MIN IXBUFF is the size in ILENSY units of the major
ZRREAK! ENTER NUMEBER OF BLOCKS symbolic and numeric buffer required for this partition.
S
BUFFER SIZES are presented for dimensioning purposes in
ZBREAK: ENTER STARTING COLUMNS FOR BLOCKSs 10 PER LINE the numeric main program; I/0 gives a count of all read
1711,21+31:41, and write operations.

BLOCK LOW COLUMN L STRT MIN L SIZE MIN IXBUFF
1

1 1 384 960
2 11 1 416 1232
. o g ;;g :ggg *ZBREAK headers consider the matrix to be column ordered;
> re p o4 276 for row ordering exchange "U" for "L" and "row" for "column."
BUFFER SIZES - ILENSY UNITS
IBRUFF 892
IXRUFF 1232
A 72
ZMEF 416
I/0 - BYTES
WRITE 12272
READ 15890

ZRREAN: ON 7 (EOF=NO)

SUGGESTI I EQUIVALENCING:
CAs IXRUEF) Equivalencing is suggested on the basis that the A and
CLEUUF F v IXBUFF(73)) IBBUFF arrays must be kept separate but can overlap I)BUFF.
S$EXECU [ON TERMINATED
¢run locdotznumtzlib O -am 1=-ia 2=-1n 3e-na 4--id S=a-nb B=-ya G=-i]l 10=-iu t=2
SEXEC!TION HEGINS

g4

SOLN Uk Numeric .execution is non-in i i ;
1.0000 1.0000 2,0305 2.0305 1.0000 Teturned from the (in this ::::c:;:eér;::esglg:lgn ubstitution
3.1254 3.5480 3.5482 1.0000 4.0754 Toutine. NSRS L e
4 -0.10502¢-01 -0,10502E-01 -2.2140 -2.2140 0.75874
4 0.75974 -1.4452 -1.,4452 1.5272 1.5272
-2.6924 -2.6924 -1.4452 ~1.4452 =2.7339
-2.7339 -2.2140 -2.2140 -2,6924 -2.6924
1.5272 1.5272 3.5682 3.5682 0.75874
. 0.75874 2.0305 2.0305 -0.10502E-01 =-0.,10502E-01
1.0000 4,0754 1.0000 701254 1,0000
1.0000

SEXECUTION TERMINATED
L]

3 Figure 21. Run of symbolic and numeric program of Apnendix C.
¢
" (82)

“J""'-_-'--.'-.'-.-.-.-.-!..--!.-l-ll-.lﬂﬂlﬂlﬂl-.!'

F. Fortran implemetation (VEGES)

1. Symbolic processing

A Fortran implementation of these vector methods can be viewed
in three distinct steps (see Fig.1l1). Given the symbolic map of
A in IA and JA, the symbolic processing routine VMSP identifies

all fill positions and creates maps of the L and U matrix factors.

Array results IU and JU from VMSP form a vectorized U symbolic map.
IVU(J) 1s an index pointing to the start of the J'th column of
numeric elements in the (yet to be calculated) packed U numeric
array. Similarly, IVA points to the start of each column in the
packed A numeric array. IL, JL, and IVL describe the L matrix.
We shall examine how these arrays are determined.

The method for finding symbolic fill loops through each column.
Counters are kept and updated for symbolic and numeric positions
in L and U. These are used for JU, JL, IVU, and IVL. The per-
muted A column is converted to scalar row indices, row permuted,
and converted back into vector form. The code then loops through
each U position, examining the corresponding L column and updating

or inserting vectors in the current column to account for fill

TR

locations. When there are no more U positions, the vector repre-

P A

sentation of this column is a map of LU for that column. It is
split at the diagonal and copied to 1U and IL. The symbolic pro-

cessing of this column is now complete.

2. Numeric factorization

CE RN

The A numeric arvay and all symbolic information is input to 1

the numeric factorization routine VMNP. Since column ordering is !

e

B . (83)

.

VEGES subroutines

Symbolic \MSP
VSORT
Numeric

3 Factorization (Fortran) VMNP
Fact. (Fortran - Assembly, VMNPF
column-ordered) VMNPA

Column-ordered substitutions VMBPC

Row-ordered substitutions VMBPR

VEGES/P subroutines

Symbolic ZMSP
VSORT
ZBREAK
ZMSPO
Numeric
Factorization ZMNP
ZMNPI
ZMNPA
ZMNPB
ZMNPO
Column-ordered substitutions ZMBPC
Row-ordered substitutions ZMBPR
I/0 routines ZLIB
Symbolic and numeric preprocessing UNBLOK
into column-ordered vectorized VSORT4
lists from randomly-ordered (i,j), ABLOK

block,or finite element lists

Table 16. Subroutine lists for factorization

- . ws'—i

o

id A

o 2

used, standard LU factorization is carried out using Lq. (12).
Returned are packed numeric arrays L and U corresponding to IVL

and IVU, respectively. Also returned is DI, an array of the inverse
pivot elements.

Looping through each column , the symbolic bounds for this
column in U and L are picked up from JU and JL. These point to
this column in IU and TL. The bounds of this (permuted) column
in A are retrieved. Calculations are done on a full column length
(unpacked) numeric array illustrated in Figure 4a. Row permuted
A values are copied into this (initially zero) scratch array. We
now loop through each U position in this column. The numeric
multiplier is copied into U and bounds on the corresponding L
column are examined. Executing as a vector instruction, the packed
L column times the numeric multiplier is put in another scratch
array T*. Looping through each L vector, values from T are sub-
tracted from the current X column as in Figure 3. After all U
elements in X have been considered, the inverse of the diagonal
is stored in DI. Remaining L vectors in X are multiplied by the
inverse diagonal and stored in packed form in L. This process is

executed for each column of the matrix.
3. Forward and back substitution

This stage of the solution solves the two systems L y = b and
Ux = y. Given numeric and symbolic L and U arrays and DI and B,

the right hand side, VMBRPC employs Equations 13 and 14 to solve the

*This describes the option when separated multiply and subtract
instructions are used.

(85)

”;D-AOS" 971 MICHIGAN UNIV ANN ARBOR SYSTEMS ENGINEERING LAB F/6 12/1 b
VECTORIZED GENERAL SPARSITY ALGORITHMS WITH BACKING STORE,(U) '
JAN 77 D I CALAHAN: P & BUNING, W N JOY AF-AFOSR-ZGIZ-"S
UNCLASSIFIED AFOSR=TR=77=0259

DATE
FILMED

LoumT7

i 2 :
.... ... &

o Y Y

B W

forward and back substitution. The solution vector X is returned

in B after the appropriate permutations.

The right hand side is first row permuted into a scratch vector

X. Looping through all but the last column in the forward sub-

stitution, for column J, X(J) times the packed L column is stored
in the temporary array T in a vector instruction. This packed T
array is subtracted from the X vector, again as in Figure 3. Com-
pleting the forward substitution, the X vector now contains y.

The back substitution proceeds similarly from the last column

through the second column, though X(J) is first multiplied by the
inverse diagonal. The solution in X is last transferred to B

using the column permutation.

4. Conclusions

Figure 11 is a flow diagram for this non-partitioned program,

showing input and resultant arrays. The symbolic processing is

executed first and is independent of any numeric arrays. The
result of this is an L U map which can be used for any matrix of
this size and structure. Next the numeric factorization and

forward and back substitution are carried out on the A matrix

and right hand side. Note that for different A numerical values

only VMNP and VMBPC must be repeated, and, when B changes, only

VMBPC need be repeated. If the matrix is originally given in

row order , VMBPR is used in place of VMBPC.

G. Fortran Implementation (VEGES/P)

1. Symbolic processing

Symbolié processing in VEGES/P does not consider the matrix
(86)

e o

™

partitioned,assuming that all symbolic descriptors can all fit
into local stores. This assumption aids the partitioning process
considerably, although possibly restricting the size of problems
which may be solved.

The symbolic part of VEGES/P does not produce separate pointer
arrays into L and U, so that vectors may cross the diagonal. This
aids numeric computation in the factorization routines, as fill
vectors are not broken unnecessarily. Symbolic vectors are describ-
ed in IX, a combination of IU and IL in VEGES. JU and JL point
into IX, with JL pointing to the first vector that runs into L.

IVU and IVL point into separate L and U arrays. JL and IVL will

not be passed to the numeric routines because the diagonal can

be easily recognized by comparing the row index with the column

number while stepping through U vectors, thus saving the I/0 necessary
to transfer these arrays. Besides these symbolic descriptors, arrays
LA and KA are passed to the numeric routines; these correspond to

JA and IA except that row and column permutations have been applied.
2. Partitioning

Results from symbolic processor ZMSP are passed to an
interactive routine ZBREAK, which, on the basis of an entered

maximum variable array storage, calculates where the matrix should

o

be partitioned. The corresponding buffer size for each of these
strips is displayed, as well as the number of the first recalled

. strip needed for factorization of each current strip. Maximum

overall buffer sizes are printed for use in accurate dimensioning
5 of a factorization and/or substitution driver program. An alterna-

tive to this automatic partitioning is also available; here the

ad

number of the first column of each strip is entered. The total

(87)

R A

number of bytes read and written in ZMNP is also precsented,
giving an indication of the effect of breaking on 1/0 operations.
Once a set of partitions is decided upon, ZMSPO is called to
write out the two symbolic data files, IAUNIT and INUNIT. TAUNIT
contains information needed to reformat the A matrix into numeric
buffers in ZMNPI. These arrays are JA, IA, LA, KA, and KVA. Each
buffer contains the section of these arrays pertaining to that
strip. Note that strips are in the permuted matrix. JA and LA are
adjusted to point into the buffer locations of IA and KA, respect-

ively. Vector KVA is created here and points into the X numeric

; buffer (combined L and U strips) to be written on JAUNIT, indicat-
A ing the start of every permuted A vector so that, when the buffer
is initialized, values can be easily transferred. INUNIT is read
by ZMNP and provides the symbolic description for each X block.
First, however, permutation vectors IPC and IPRI are written out

for use in ZMNPI and ZMBPC. To describe the X block, arrays IVU,

JU, and IX are broken and written out. IVU is adjusted to point
into the X numeric buffer and JU to point into IX in the buffer.

Header information is written out with each buffer, including

buffer number, column range, and first L strip for the numeric

factorization and substitution routines.
3. Strip numeric factorization

f The numeric factorization process is broken up into several

steps (Fig 23). Subroutine ZMNPI is called once, initializing the

ad A

X numeric buffers. Permutation vectors are passed to ZMNPI, which
reads symbolic information from IAUNIT. The A matrix is input on

file NAUNIT in unpermuted order, written one column per logical

(88)

R N

M L ST S WL T P00 7 TR A i e £ % - ek = T
L A ARSI ST i v ‘ e o AT g e
enciti s il

2 A

R v e -

.

record. File pointers to each column are recad in from TBUNIT.
(These file pointers were picked up when the matrix was being
written, and are the responsibility of the user. Also on IBUNIT é
is the right hand side, to be read by ZMBPC. Note that with this
method of storing the A matrix, only one column must be in memory
at a time, but other methods are possible, depending on the limit-
ations of the system.) Strip by strip, the matrix is permuted and
fill positions are set to zero. The resultant X numeric buffer is
copied out to JAUNIT, to be read later in ZMNP. All partitions are
processed at this time so that buffer space needed here can be over-

lapped with space used in the factorization.
4. Numeric factorization

Factorization takes place one strip at a time. ZMNP reads symbolic
and numeric information from INUNIT and JAUNIT, respectively, before
passing control to ZMNPA. This routine is given the number of the
first L strip needed and an array of pointers to the start of L
strips written on ILUNIT. The last array position set points to the

current strip, or an end-of-file, since the current strip has not

yet been factored. (Note that if a file system has no pointing

facility, ILUNIT can be rewound and buffers read starting from number
one. The price paid is some unnecessary I/0, depending on the matrix
structure.) Having read an L buffer, ZMNPA performs the normal
numeric computations which involve only these two (X and L) parts
of the matrix. L buffers are read and computations performed
until an end-of-file (up to the current strip) is encountered on
ILUNIT. ZMNPB is called to perform numeric computation within the

current X strip and put the inverse diagonal in DI; the result is

(89)

— - T TV T T NN e

2l A

B T R

a completely factored strip of the L U matrix. In ZMNP numeric J
computations there are only two differences from VMNP. Instead '
of operating on an expanded (unpacked) column before packing it
into the L and U arrays operations are carried out on the already
packed X numeric buffer. The packed buffer option was specified
by the preformatting of the X numeric buffers. Symbolic and
numeric pointers have been kept for each column pointing into

the U part of the X block. As we step through U, these end up

pointing to the start of L. These are effectively IVL and JL.

With IVL, JL, IVU, JU, and IX, we have the information to
separate the X block into L and U and write these buffers out
as ILUNIT and IUUNIT, respectively. This is done in ZMNPO. IX
is broken at the diagonal, JL and JU adjusted to point into their
respective parts, and likewise the numeric buffer is broken and
IVL and IVU adjusted. Buffers, with appropriate header information,
are written out and the position of the ILUNIT file is noted for

use in ZMNPA. This completes the operation on this strip, and

the next symbolic and numeric buffers are read in.
5. Forward and back substitution

ZMBPC is input permutation vectors IPC and IPRI, data files
ILUNIT, TUUNIT and IBUNIT, DI and vector B, scratch vector X

and space for any buffer on the L and U data files. ZMBPC performs

the forward substitution on L buffers, rcading them scquentially
from ILUNIT. In the back substitution, however, the U buffers must

be retrieved in reverse order. This can be accomplished in various

(90)

LR ™ N

;;
§

ways, using either IBM Fortran direct 1/0, the BACKSPACE statement,
or some system routine taking advantage of a particular file sys-

tem.

The driver program included with the vectorized sparse matrix
package creates a sequence of randomly-positioned matrices with
randomly-selected pivot orders. It is intended as a test program,
checking the solution vector against one generated with the matrix
and flagging errors; it also gives an illustration of program flow
and subroutine calls.

A similar driver and matrix generator is included with the

partitioning package, with the addition that matrix break points

are randomly generated, and the routine interpreting these breaks
has been made non-interactive for convenience in running many
matrices.

The above program can be used as a non-interactive test program,
but by setting a flag, the break point generation will be bypassed

and full interaction with the breaking routine is possible.

(91)

— T TR TV SN W

M

T e

«d

Gl Lt

N,IA,JA (vectorized)
IPC,IPRI

;

LMSP

IVA,IX,LA,KA,
Ju,IVu,JL,IVL

v

{EEREAK

;

NBRKS, IBREAK,
ISYMPL, ISYMPU,
ILBLK

‘%
ZMSPO

;

TAUNIT
INUNIT

Figure 22. Symbolic factorization flow chart for partitioned

matrix solver

(92)

A matrix structure,

permutation vectors

Symbolic preprocessing

A permuted structure L U
vectorized structure

Calculate and display ZMNP,
IMBP buffer sizes based on
matrix breakpoints.

Final matrix breakpoints,
symbolic positions per column,
first L block needed for every

X strip in numeric factorization.

Adjust array to conform to matrix
partitioning, form buffers,
output on IAUNIT, INUNIT.

Symbolic data files.

~

e

g;
p

"

TAUNIT, INUNIT

— =~ -— — ZMNP - -
r

NAUNIT, —_
IBUNIT :

. — — —— — o e e . .

ILUNIT, IUUNIT, DI

IBUNIT=—={>

Figure 23.

— >

'
[pnee1]

F——

‘ZMNPA

E{:
:
;

—

|

ZMNPO

ILUNIT,

b

i

ZMBPC,or
ZMBPR

TR I N W0, T W o

Numeric factorization and substitution flow chart

e e e

(93)

Symbolic data files.

Numeric factorization

Reformat and permute A matrix.

Initial X numeric buffers.

Numeric operations on preceding L
blocks, beginning with prescribed L
block

Numeric operations within this block.

Inverse diagonal.

Reformat X block into L and U and
write out.

L and U symbolic and numeric buffers.

Factored matrix.

Forward and back substitution.

Solution vector.

T T TG L N TN g

F"" o ”:'_"' P ¥ " e e v w

Appendix A

Numerical Experiments

I. Introduction

ot

Two dominant issues related to the efficiency of a vectorized
sparse equation solver are
1) matrix size and density,
2) the compatibility of matrix structure and
computer architecture.
Therefore, an experimental study should involve a class of matrices
of increasing size, with documented densities and structural
regularity.

Although these properties can be synthesized relatively inde- ‘3
pendently of one another by generating variants of randomly-
positioned matrices, such studies are often viewed as unrepresent-
arive of commonly-encountered sparse matrices. For this reason,
the matrices in this study are either taken directly from an
application or synthesized according to grid (mesh) generation
rules associated with finite element problems, solved by dissection 4

methods [1].
II. Finite-element Matrices

Illustrated in Figure Al(a), the nodes of a rectangular 2-]
dimensional linear finite element grid are numbered in a prescribed

manner [1] so as to yield local decoupling of rows and columns of 3

the associated matrix, the local coupling replaced by a distributed

T

coupling throughout the matrix. This dissection process proceeds

routinely so long as the number of nodes/side is 2“-1, and is

v

(94)

%

S RO

) 5 2 |1 234567829
* X ¥ %x
X x X X
7 S X X X X
£ X xx
X x Y. X x ¥
3 6 4 XX X XXX
Four element L
grid and X X X XX X X X X
connectivity X X X X 0 X X

Associated matrix (X)
and fill (0)

Figure Al. Simple dissected grid and matrix

38 24

42

T
|
|
+
|
]
) 25
46 47 48 49
(
L4

@ 29 (31 27

40
r{-]
Grid connection Second (light)
and initial dissected and third dissection
node numbering stages

Figure A2. Larger dissected grid

2 A

SR g

(95)

L 2

TR T TGS PO NN Ry

B

illustrated for a larger grid in Figure A2,

Due to the regular structure of this finite element family, it
is possible to obtain exact arithmetic operation counts and estimates
of the vector counts involved in the matrix factorization. The
asymptotic components of these formulae (for large grids) are given
in Table Al, together with exact counts obtained from experimental
solutions of the matrices. This is intended to establish the
validity of the formulae used throughout the report to estimate
computational complexities of problems beyond the range of the
experiments.

Tables A2 and A3 give a variety of structural properties and
execution times for n = 2,3,4,5. Most of the results are cited
in context throughout the report. Also included are the timings

and memory requirements associated with two early procedures

[6]1[9] for solving relatively small sparse systems, namely the linear
code and interpretive list results of the first and second data
columns. These procedures are discussed briefly on page 5. The
observer will note the extreme speed and large memory requirements of
the former, and the lack of advantage in either speed or memory of the
latter. Other comparisons are given in [2][11].

For the partitioned solution, the fractions of the total solution
time devoted to computation, I/0, and other partition-related over-
head are critical to the evaluation of the algorithm and its

implememtation. Table A4 displays these timings for a number of

sizes of available local store (Sk).

. I1T. Other Sparse Matrices

Three other matrices were chosen for study (Table AS5), ranging

from a highly sparse but large power system problem to a finite

o

element problem of large size and greater density than the family
cited in Table A2 . Credits and references are as follows:

1) Electrical power system, from Mr. Walter
Snyder, American Electric Power;

2) Three-dimensional 44-body mechanism model of
Boeing 747 landing system [21], from Mr. Keith
Brewer of the Flight Dynamics Laboratory of Wright
Patterson Air Force Base;

3) Linear, 2 variable, 2 dimensional finite element
model of MESFET transistor [22], from Dr. John
Barnes, American Microsystems.

G aorato g

e —

ATTWey JuUSWS[d 93ITUTF I0F sernuroy dr3oldudse jo L311EN)

‘00 +

‘61-

vi-

0°¢+

20"+
6 8+

I1+

2°9+

(3usd aad)
101419

9°0T

S8°¢v

Lzey

L°S¢

CIL1E

896¥LC

€6°C

v8Z11

8v¥799
196

anyieA
Te3usuraadxy

103

L°41 Lsgrg-m)/(,2)zes"

99°¢

89L7¢

95861

g

"88Z71

8CL¢L
vzot

G=U
UOT3BNTBAY
BINWIOH

¥9°5-U98°T
(qzLT'¥
TLY-ustST
(qz2)ee
uz ¢ (9LE-UPZT)
'S
(2t

(I
CNN

BINUWIO]
51303dwdsy

G o e

TV 9Iqel

UOT3BZTJIO03OBJ UT
suorjexado drjouylTie
3o yiduag

10309A a3eaaae

T 30 yiduax
J1031D09A 93rISAR

T 30
S10329A JO JIaqunu

AT 30
A3TISsusp uunjyod

(spiom 2314q-7) n1 3O
a3ex031s drroquAs

(spiom 2314q-8) N1 3O
98®v103s DdTaIaunu

V 3o yaduay
I03109A 93eISAR

(spiom 934q-7) Vv 3O
93e1031Ss dT1O0qUAS

(sprom 234q-8) VvV 3O
93eI1031S d>Taduwnu

9z1Ss

A313doayg

Lo MR L

o

VY

TN e

3 Matrix Matrix [nner lLoop
Dimension Storage Computation*

A It U Factorization . & B. Sub.

Y 2.88 1825 2.62 1.97 (2.31) 2225 ([(Z.62)

49 2.1 2.74 D 1A 22925 (4 .15) 2.53 (3.78)

Z25 2.87 Sk 71 2.97 4.42 (6.69) 3.34 (5.29)

961 2.93 4.83 3.86 6.85(10.6) 3.86 (7.07)

*Presented as: successive multiply-subtract(separate multiply-

subtract)

(a) Average Vector Lengths (words)

Table A2. Structural propertics of
finite element experimental problems

ﬁatrix LU Storage* (bytes) ggi:?Qz & jnon-zorg*
Dimension Numerical (*8) Symbolic (*2) A LU A LU
9 336. 62. 5.44 2.33 60.5 58.3
49 4,880. 50 7.36 6.22 15.0 2SS9
225 40,8438. 5,376. Sile 2 1S 5.65 10.1

961 267,280. S, 7312 8.61 17.4 .897 3.62

*Unit diagonal not included
(b) Density

Table A2. Structural properties of
finite element experimental problems

(99)

|
— m-zn

{
!
.
*
B s e B o |

—, T

uotstdaxd ayfqnop ‘Y uex3xod ‘9/A 0L¥ o
Iyepuy ¢s934q utr AJowsuw ‘SPUODIISTTIIW UT SOWTI (PTI8 JUSWS[S 93ITULF Pa3IDISSIP = :
01 patrtdde spoyisuw uorinyos XTa3ew asieds aATF Jutraedwod siynsax [eluawtxadxyg ¢y aiqe} ! .
| (30rx3qns-A1dr3inu ajeaedss yitm swrl) “dooy
m I9UuT 30e13qns-ATdI3I[NU PAUTQWOD Y3ITM dwrl ‘ (UOTSISA I9[qUOSSE 103F dwil) Se pajuasaxd sarijug +
rs 5 UOT3BZTI03IDRJ DIidwWnu e
Jo Butuutdsaq 3e 91031S | cmwuww UT paunsse BlEP DIJIauWNU pue DdIJoquAs XTIJew paxdprouf =
*ZI9Z11 ‘0v868T Axouwapy
791 ("9ST) ‘-¢11 “v6 ‘qns g 8°4
"L6YT ("e£81)““6081° ("226) YTl dtIsuny
€18 6L "6£02 dT10qUAS 196
‘9¢ove 5SS "88LL6T ‘8788vY Axousp
"6 ("se) "6l ST L"62 "qns g 8°4
"06¢ (L LLY) 991 ("S6) 80T €02 dTrauny .
"8¢1 “1g1 “L6T "vLET "TLLT d110qu4s SZ¢
‘oevy "ZL0S ‘0Z8L1 ‘8819¢ Kxoudpy
A (e"€) ‘92 1°¢ S6°¢ 80°T ‘qns g 38°d
v 16 (z'vT)‘p-11°(8°8) 88 1°v1 L€ dtasunN
€ S 9°02 V9T “TIT "9¢T dTToquAS 6V
809 265 9¢21 "tv0z (s914q) Lxouwdp
z's (EL5°) "65%° Lvz: gn ze” (sw) *qng *g 8°4
6°0t CZ1°T)°868°°(62L°) 929" 8¢ ° iz* (sw) otxaumy
e SiZ " S ve-1 L9°S 69°9 (sw) d>troquAS 6
dew n1 103297 dew n1 dew n1 UOTI3RIDUY A31T3uend 3218
4yU0T11318g o13uUTg +x 103209/ ¢l1B1BOS gl19310adasjug +3P0D pRanseop XTI3BR

‘H uexlixog ‘9/A 0Ly Tyepuy f‘warqoxd uorienbs 196 uo weadoxd pauoririied jo s3Tnsay ‘py AI1qel

UOTIN[OS DTJIawnu)¢ °'8Z Pue ‘98eI031S ABIIE JUBISUOD)¢ '0¢ ‘Werdoxd JISATIP YT SOpPNIOdUIy

1eiol

su gN x LT2000°
su gN % £2000°

+ §G80°
+ L90°

:WOILF poleIndIed a1k SSBUWI)] O\H

o
—
@l]
!
|3
*uotrstdaxd agqnop
*pPolIdFsuell s934Q JO Jaqunu 3yl ST gN 9I9YM
QWT] 93ITIM
SwTl DpEIY
$81 2an3TJ ‘H9‘d SYDO0TQ IO0jixy
saurinoxqns
B 22 S 12 Ly ASEL NET
€22 0L 6 NIET 1L
"161 0§t < ¥792 X202
‘16 0S¢ z Avzs AYoP
‘67 0SL 1 N80T X886
suotjrlaed
sw su Jo "oN x1B10] Ameu uorarlang
:b mh (s9314q) 23e103§ wnuwixwy

°T ‘v “L0T *L99¢ "69S ‘v8etl RAVAS
GG “6S ‘vt ‘€ISZ LEY “¢IS ‘£9sT
‘'z =SS “€0T FAC% “ISY ‘69¢ "Z6ST
G ‘9§ ‘Z0T ‘veve “1Sv ‘7S¢ ‘1€91
i/ ‘6S ‘20t TL6¥e *ZIS ‘8I¢ “L991
pPEaYIdAQ (/1 Odtrouny 1e30] peoyIdA0 0/1 dSt.ouny
Gty TR e

v

‘09
‘S
“vS
)
“£S

su

M

STIREIPRIGRY -

(H uexjrod ‘9/A 0Ly TYyepuy)
sodt1aleu osaeds pojerax-3urxssaurdus
JO SUOTINTOS POZTI0IIAA JO SIINSdY °Sy 9[qel

(30ea3qns-4A7dratnu s3eiedas) 30e13qnS-ATdII[NW SATSSIIINS :SB PIJUISAI{,

"00v8T "6L6€ (8 pz) 5°8 (z-8¢) ¢€-91 9A0QE 99§ ¢
"6€¢€ "6L9 (ye°z) 29°1 (¢79) 8°1 dA0Qe 99§ 7
"SOTT "9¢9T (2g*2) Lv'l (1°9) %7 sAoqe 995 T
(X) Tedrxauny (S) dTroqUAS "qns g 9 "4 UOTIBZTI03DEY
(sw) autr] uorieandwo) suotieindwo)y dooq 1auuj .o>mq mm
o)
(pta3 xeg

-nSueTll pal1dassiq)
T9PO]N 92TAS(
DTUOJI]DOTY Jusuwalyg

L 2L 99v“LL 000 °TL6 8891 93TuTrj JeB_3UTT “¢
wa3sAg SurpueT]
4 016°€T 0vZ1sT vZ6 31JBIDITIV (-¢ INLIS-S§ °7
wa3s4g
S 29v°7L 8vv922 00¢S I19MO0d TBOTI3d9TH 1
N1 Jo A3tsuaq (zx) OT10quUAg (8x) TeotaauwnN suot3ienbq uot3dTIdS9Qq WaTqoad
uwnyon o8e1015 07 Jo "ON

-

3oe13qns-AdI3[nu paurquo) 1oeI3qns-A1dr3[nu 23eiredas

.

IANILINOD 0¢
0T oL 09 (r0o9I°31°r) 41
I+ = [cZ
(11A)L - (1010-)X = (1010-)X
4ANILNOD 0¢ T + ILAI = ILAI 02
0T OL 09 (Log9I1°91°() 4I SZ 0L 09
I+ = Sz CIe + 44140 = ILAI
(17A1)I#X0V - (1c10-)X = (I010-)X Oi+d4100)1 - DX = (X ST
T + ITAI = ITAI 02 rMe*Icac = ¥ st od
SZ Ol 09 1+101C - ILAI = ddIdr
CIe + 441d0 = ITAI (C)ar = rr
(X+d4d41dr)T+xXnV - DX = (DX ST I+ = ¢ i
IS0 = X ST 00 0z oL 09 (0 LT1°1r1r) 41 m
I + 1010 - ITAI = 44140 (0)1e = 1010 01 P
(e = $1F doll = r x
1«0 = 0¢ OL 09 (LO9I°l9°doLI) 4I :
0Z 01 09 (o 171°7L1r) 41 0 = ILAI i
()1 = Tr0e 01 OI+ITAL) X0V =) L S 3
dOoLI = ¢ NIT‘T = X S 0a
0¢ OL 09 (L09I 19°dOlI) 4dI T-ITAI-(T+I)TAI = NA1
{I)X = Xny (IDx = Xxnv
1-CI)TAT = TIAL 1-(I)TAI = ITAI
1-(1+I)1I = lodl T-(1+1)11 = lodl
(1)11 = 401l (I)T1I = dOlI
INN‘T = I 0§ Od IANN‘T = I 0€ Od
7) 9
NOILNLILSENS Qyvmiod D NOILALILSENS @dvMiod DO
“ o)

1oeI13qns-A1dia(nu paurquod pue sjeredas Yitm
‘uo1inN3I3sSqns pPIBMIOJ JI0J SSPOD UBIILOY ordwexy g Xtpuaddy

N e I

i

i

TAd N

!
!

oonoonoonn

o000 O 0

o0 0o o0

o000

Appendix C. Main Programs for Solution
of Finite Element Grid of Figure 19 '

IMPLICIT REAL%8(A-H,0-2)

SYMROLIC MAIN PROGRAM FOR EXAMFLE OF FINITE ELEMENT
PREFROCESSING. SEE VARIABLE DESCRIFTIONS INTERNAL TO
SURROUTINES.

DIMENSIONS FOR ROUTINE UNBLOK

INTEGERX2 IFARTsLENsIAsNA

DIMENSION IFART(&)»IXF(6)

DIMENSION NA(104)

DIMENSION MAF(1000)sLEN(1000)¢IFB(1000)»JFEB(1000)
DIMENSION JF1(47)yIVA(47)vJA(47)9IA(260)

INTEGER N/46/

INTEGER IVEC/0/»NUMEUF/2/yNFART/S/+NEC/8/

DATA IFART/1+11+21,31,41+47/

DATA IXFP/1+25+49+73+97+97/

DATA NA/1+293+3+4+59192+1692+3+893+1498+495+10,
C 2v6+874+8510»
Cc 6979898:991096979119798913+18¢9913+s9910915,
C 7+11+13+5+13+15,
[

11912+13913914+s15511912916912+13,18,13+14,18»

C 14,15+20+12+16+918514,18,20,

C 16917+18+18919920916917921917918922+18+919922»

C 19920923917+21+s22919922923»
Cc ¥ 1¢2¢5+9941,43+,45,46/
INTEGER IMUNIT/O/
COMMON TO ROUTINE UNELOK
COMMON /FEL/ NVAR/»NNOLE
COMMON TO ZLIE I/0 ROUTINES
COMMON /ZLEN/ MAXLEN

DIMENSIONS FOR ZMSF» ZBREAKe ZMSFO

INTEGERX2 IXsIXTyIXEsIFs»ICNT»IFCyIFRI»KAs»IXBUFF
DIMENSION IBREAKN(S1)

DIMENSION IFC(46)+IFRI(46)

DIMENSION ISYMFL(46)sISYMFU(46)9IKVA(46)yIUFOS(46)
DIMENSION JUC(47)9JL(47)sIVUCA47),IVL(47)9LAC47)
DIMENSION IFTR(47)sIXT(47)sIXE(47)9IP(47)
DIMENSION KA(260)s1IX(300)

DIMENSION JXBUFF (500)y IXBUFF(1000)

EQUIVALENCE (IXBUFF s JJXRUFF)

DATA IFC/1+293+49596979899910911¢12913914915916917+18519+20»
C 21+22923+24925926927928929930931132¢33¢134¢35936937938939»

C 40+41+42+,43+44+945+46/

DATA IPRI/192+39495+697+1899910911912+,13914+915916+17+18919920,
C 21922923924925926927928929930+131932933934935936137+389139+40y

C 41,42,43+44,45,46/
INTEGER IAUNIT/1/sINUNIT/2/
INTEGER MAXCNT/1/»MAXKA/260/ +MAXXS/300/
COMMON TO ROUTINE ZEREAK
COMMON /SIZE/ MAXTIRsMAXTIXsMAXTAsMAXTZE
COMMON TO ROUTIME ZBREAK
COMMON /INTACT/ IFR

NVAR= 2
NNODE= 3
MAXLEN= 32758

NUMERIC BUFFER SIZES - NOT AFFLICAELE IF
SYMBOLIC AND NUMERIC RUN SEFARATELY

MAXTIE= 10000
MAXTIX= 10000
MAXTA= 10000
MAXTZB= 10000

IPR= 1

R e i e LT

(104)

o

Ad N

TR

C

C SYMBOLIC FINITE ELCMENT AND BLOCK FREFROCESSING

c
CALL UNELON(N¢NAr IAF s NEC eNFART ¢ LPARY 0 IVEC » NUMBUF » IMUNIT »
C IFByJPE»JFL/RT o MAF P LENsTADIHe IVAr JAPIA)

Cc
C WRITE A NUMERIC BUFFER DIMENSION

c
ID= IADIMXNUMEUF
PRINT 1,ID
1 FORMAT(ODIMENSION AC‘»ISe’)’)
c:
C SYMBOLIC MATRIX FACTORIZATION
c

CALL ZMSF(Ns JA»IAvIVA» JUs JL e IXs IVU» IVL o IXTo IXBy IPy
C ICNTsMAXXSyMAXCNT+IFCrIFRIvLAYKA»MAXKA)

C INTERACTIVE MATRIX FARTITIONING

Cc
CALL ZEREAK(NrIVAsJArLA»JUsJL»IXy IVU» IVL s NERKS» IBREAK ¢
C ISYMFL»ISYMFU» IKVAs IUFOSsIPTR,82)

c
C OUTFUT SYMBOLIC MATRIX FARTITIONS
c
CALL ZMSFO(NsIVAsIArJAPLAYKA»JUr IXs IVU»IVLy IPC, IPRT» IBREAK,
C NERKS» IXEUFF » JXBUFF » ISYMPLy ISYMFU» IFTRy IAUNIT» INUNIT)
2 STOP
END
IMPLICIT REALX8(A-H,0-2)

NUMERIC MAIN FROGRAM FOR EXAMFLE OF FINITE ELEMENT
PREFROCESSING. SEE VARIAELE DESCRIFTIONS INTERNAL TO
SUBROUTINES.

DIMENSIONS FOR ROUTINE ARLOK

[z s NNz NsNeNel

INTEGERX2 IFPART,LENsNE
DIMENSION IFART(6)sMAF(300)/NB(16)
DIMENSION IVA{47)
DIMENSION A(248),B(46)
INTEGER N/A46&/
INTEGER IMUNIT/0/sNAUNIT/3/9IBUNIT/A4/¢NBUNIT/S/
C
C DIMENSIONS MOR ROUTINES ZMNPy» ZMEFR
Cc
INTEGERX2 IFCysIFRIsIXRUFFyIRBUFF
DIMENSION IFC(46)»IFRI(446)yIPTR(46)
DIMENSION DI(46)rX(46)
DIMENSION XERUFF (308)» JXBUFF(616)y IXKUFF (1232)
DIMENSION XEUFFIC(223),»JERUFF (446) IRRUFF(892)
EQUIVALENCE (IXBUFF» JXBUFF»XEUFFsA)
EQUIVALENCE (IBBUFF » JRBRUFF » XEUFFI 9 IXRUFF(73))
INTEGER IAUNIT/1/,INUNIT/2/
INTEGER JAUNIT/8/»ILUNIT/9/9IUUNIT/10/
C COMMON TO ZLIB I/0 ROUTINES
COMMON /ZI.EN/ MAXLEN

MAXLEN= 327%8

g NUMERIC FORMULATION

¢ CALL NFINIC(NsAYNERUNIT)

g NUMERIC FINITE ELEMENT AND' BLOCK PREFROCESSING

i CALL ABLOK(NsNFARTy IPARTyNEyMAF)LENs IVArAs Ky
C IMUNIT/NEUNITyNAUNIT,IEUNIT)

E NUMERIC MATRIX FACTORIZATION

CALL ZMNF(NyAs IBRUFF 9 JEBUFF 9 XBUFF Iy IXRUFF ¢ JXRUFF ¢ XBUFF s IFCy
C IFRIyDIyIFTRy IAUNITyNAUNIT»IRUNITy JAUNIT» INUNIT»ILUNIT,
C IUUNIT)

Cc
€ ROW ORDER FORWARD ANDN BACK SUBSTITUTION
Cc
CALL ZMEFR(Ny IXBUFF ¢ JXEUFF ¢ XBUFF » IRUNIT» ILUNIT» JUUNIT,
C DIsEBsXsIFPCyIFRI)

c
C WRITE SOLUTION VECTOR
c

FRINT 19 (E(T)oI=1sN)

1 FORMAT(’OSOLN VEC’/(5614.5))
STOF
END

(105)

o - ¥

REFERENCES

[1.] George, J.A., "Block Eliminations on Finite Element Systems
of Equations," Sparse Matrices and Their Applications, Ed.
D.J. Rose and R.A. Willoughby, Plenum Press, 1972.

h

[2.] Woo, P.T., et al, "Application of Sparse Matrix Techniques
in Reservoir Simulation,'" SPE 4544, 48th Annual Fall Meeting
of the Soc. of Pet. Engrs., Las Vegas, 1973.

[(3.] Bank, R.E., "Marching Algorithms and Block Gaussian
Elimination,' Sparse Matrix Computations, Ed. by Brunch and
Rose, Academic Press, 1975.

[4.] George, J.A., "An Efficient Band-Oriented Scheme for Solving
n by n Grid Problems,' Proc. AFIPS Conf., FJCC, vol. 41,
1972, pp. 1317-1320.

[5.] IBM System/360 and System 370 Subroutine Library-Mathematics
(SL-MATH), no. 5736-XM7 1971 (Rental software available
from IBM).

[6.1] Calahan, D.A., and T.E. Grapes, "Description of a Sparse .
Matrix Compiler with Applications,' Report AFOSR-TR-71-
2676, Systems Engineering Laboratory, University of Michigan,
1971. Also Report AFOSR-TR-72-1973, "Addendum to Sparse
Matrix Compiler Manual,'" Calahan and Schlansker, 1972.

[7.1 Tinney, W.F., and J.W. Walker, '"Direct Solutions of Sparse :
Network Equations by Optimally-Ordered Triangular Factori-
zation,'" Proc. IEEE, vol. 55, pp. 1801-1809, 1967.

[8.] Gustavson, F.G., et al, "Symbolic Generation of an Optimal
Crout Algorithm for Sparse System of Linear Equations,"
Sparse Matrix Proceedings, Ed. by Willoughby, IBM Thomas
Watson Res. Center Rpt. RAl 3-12-69, pp. 1-9, 1968.

[9.] Lee, H., "An Implementation of Gaussian Elimination for
Sparse Systems of Linear Equations,' Sparse Matrix Pro-
ceedings, Ed. by Willoughby, IBM Thomas Watson Res. Center
Rpt. RAl, 3-12-69, pp. 75-84. ,

[10.] Gustavson, F.G., '"Some Basic Techniques for Solving Sparse
Systems of Linear Equations,'" Sparse Matrices and Their
Applications. Ed. by Rose and Willoughby, pp. 41-52, 1972.

; [11.] Woo, P.T., et al, "Application of Sparse Matrix Techniques ’
. to Reservoir Simulation," Sparse Matrix Computations,
Ed. by Bunch and Rose, Academic Press, 1976.

2D

(106)

!
'

v e e s

(12.] Chang, A., "Application of Sparse Matrix Methods in
Electric-Power System Analysis,' Sparse Matrix Proceedings,
Ed. by Willoughby, IBM Thomas Watson Res. Center Rpt. RAl _
3-12-69, pp. 113-122, 1968, b

o

[153.] Calahan, D.A., "Parallecl Solution of Sparse Simultaneous
Linecar Equations,'" Proc. Eleventh Allerton Conference on
Circuit and System Theory, University of Illinois, pp. 729-
738, 1973.

[14.] Von Fuchs, G., J.R. Roy, and E. Schrem, "Hypermatrix
Solution of Large Sets of Symmetric Positive - Definite
Linear Equations,'" Computer Methods Appl. Mech. Enging.,
vel. 1, pp. 197-216, 1972.)

[15.] Noor, A.K., and S.J. Voigt, "Hypermatrix Scheme for
Finite Element Systems on CDC STAR-100 Computer,
Computers and Structures, vol. 5, pp. 287-296, 1975.

[16.] Gentleman, W.L., and A. George, 'Sparse Matrix Software,"

in Sparse Matrix Computations, Ed. by Bunch and Rose,
pp. 243-262, Academic Press, 1976.

[17.] McKellan, A.C., and E.G. Coffman, Jr., "Organizing
Matrices and Matrix Operations for Paged Memory Systems,"
CACM, vol. 12, no. 3, March, 1969.

[18.] Eisenstat, S.G., et al, "Considerations in the Design
of Software for Sparse Gaussian Elimination,'" Report
#55, Dept. of Computer Science, Yale University, (no date)

[19.] Knight, J.C., W.G. Poole, and R.G. Voigt, "Systems
Balance Analysis for Vector Computers,'" ICASE Report 75-6,
NASA Langley Research Center, March 1975.

[20.] Hachtel, Gary, "The Sparse Tableau Approach to Finite
Element Assembly,' Spvarse Matrix Computations, Ed. by
Bunch and Rose, Academic Press, 1976.

[21.] Orlandea, N., D.A. Calahan, and M.A. Chace, "A Sparsity-
Oriented Approach to the Dynamic Analysis and Design of
Mechanical Systems, Parts I and II," Journal of Engineering
for Industry, (to be published).

2 [22.] Lomax, R.J., and J. Barnes, "Two-dimensional Finite Element
% Simulation of Semiconductor Devices,'" Electronics Letters,
: vol. 10, no. 16, pp. 341-3, 8 August, 1974,

o VY

(107)

SR e

P 3

r
R — - w--«"'ri

